JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN

COMPUTER ENGINEERING

ATTACK METHODOLOGY ANALYSIS: SQL INJECTION ATTACKS
MEENU LOCHIB
Research Scholar, Singhania University, Jhunjhunu, Rajasthan

ABSTRACT : SQL injection attacks pose a serious security threat to Web applications: they allow attackers to obtain unrestricted access to the databases underlying the applications and to the potentially sensitive information these databases contain. Although researchers and practitioners have proposed various methods to address the SQL injection problem, current approaches either fail to address the full scope of the problem or have limitations that prevent their use and adoption. Many researchers and practitioners are familiar with only a subset of the wide range of techniques available to attackers who a retrying to take advantage of SQL injection vulnerabilities

I. INTRODUCTION

To cut costs while increasing reliability and maintainability, modern control systems are using commercial off-the-shelf (COTS) applications, software development environments, and operating systems rather than the proprietary applications and protocols popular in legacy environments. From a security standpoint, this transition has both positive and negative implications for control system (CS) networks.

However, this integration of COTS software into CS networks introduces a wide range of new computer-based threats to critical infrastructure. CS security previously depended on the principle of “security through obscurity.” As long as each individual CS environment was highly customized and dependent on poorly documented, obscure proprietary protocols and applications, attackers required extensive knowledge of the CS network architecture, significant technical expertise, and hands-on experience with the CS application being used by the target. This is no longer the case.

Exploits and attack methodology, already widely used against the COTS software on IT networks, can be readily used or ported over for use against CS environments. This significantly eases the complexity of performing cyber attacks against control systems. The new level of threat faced by critical infrastructure is compounded by the move to incorporate communications—primarily from the CS databases—into organizations’ business or financial networks, which in turn are connected to the public Internet. Now, overwhelming numbers of exploits exist for key components of CS networks and the vulnerabilities can be accessed via the web.

II. HISTORY OF SQL INJECTION

SQL injection as an attack method was first publicized as a side note to a comprehensive Microsoft web services exploitation article.

This article was the first to introduce a directed, successful attack using SQL injection and proved how easy it was to actively circumvent implied security features. The structure of the database was enumerated through random input and close analysis of the error reports generated by feeding the database the random data.

III. Impact of SQL injection
The important information contained in these CS databases makes them high-value targets to attackers. By connecting CS databases to business or financial databases or computers with applications used to access the data, attackers can exploit the communications channel between the two networks and bypass the security mechanisms used to protect the CS environment. Since SQL injection is one of the primary forms of information gathering and exploitation used by attackers against databases, the evolution and significance of this particular attack methodology must be evaluated for its impact on CS security.

Injection into a database with valuable data can have far-reaching effects, especially in one such as a CS environment where data accuracy and integrity is critical for both business and operational decision-making. Control systems are more adversely affected by SQL injection than are many general IT databases because they are so reliant on data accuracy and integrity.

IV. SQL Injection and its types
Injection into a database with valuable data can have far-reaching effects, especially in one such as a CS environment where data accuracy and integrity is critical for both business and operational decision-making. Control systems are more adversely affected by SQL injection than are many general IT databases because they are so reliant on data accuracy and integrity.
Injection through user input : attackers inject SQLcommands by providing suitably crafted user input . A Web application can read user input in several ways based on the environment in which the application is deployed.
Injection through cookies: Cookies are ﬁles that contain state information generated by Web applications and stored on the client machine. When a client returns to a Web application, cookies can be used to restore the client’s state information. Since the client has control over the storage of the cookie, a malicious client could tamper with the cookie’s contents.

Injection through server variables: Server variables area collection of variables that contain HTTP, network headers, and environmental variables. Web applications use these server variables in a variety of ways, such as logging us age statistics and identifying browsing trends. If these variables are logged to a database without sanitization, this could create SQL injection vulnerability.

Second-order injection: In second-order injections, attackers seed malicious inputs into a system or database to indirectly trigger an SQLIA when that input is use data later time . The objective of this kind of attack differs signiﬁcantly from a regular (i.e., ﬁrst-order) injection attack. Second-order injections are not trying to cause the attack to occur when the malicious input initially reaches the database. Instead, attackers rely on knowledge of where the input will be subsequently used and craft their attack so that it occurs during that usage.
SQL injection example — A full name fed to a MySQL database and encapsulated by quotes may still be used for injection.

Proper user input: abc

Translates to: SELECT * FROM records WHERE name=”abc”;

Malformed user input: abc”; DROP TABLE records; #

Translates to: SELECT * FROM records WHERE name=”abc”;Drop TABLE records;

The trailing “#” in the “Malformed user input” command is the MySQL comment operator. It tells the MySQL database to ignore everything that follows the comment operator. This manipulation of SQL syntax allows the attacker to ensure the trailing quote is dropped and the query appears valid. If the program making the malformed query described above had sufficient privileges, the malicious input would destroy the entire records table. This attack could result in the modification or complete destruction of a database.

V. Significance of SQL injection as an attack methodology
Since SQL is highly standardized and is an open standard, it is well documented and attackers have detailed understanding of the technical parameters of the language and its intended use. The information also allows attackers to understand how SQL queries may be manipulated during attacks to exploit a database or to use error reports to enumerate the database structure, thereby facilitating the attacker’s ability to manipulate data and responses more effectively.
SQL is a language used to communicate with databases so it can be used by many different types of front-end applications to query the database. The most problematic of these are the web-based front ends because users must be able to create, modify, and delete data. Essentially, the user accessing the front application via a website is given valid authentication token and high-level permissions on the database without having to demonstrate a valid need for them. The only safeguards in these applications are those included by the programmers to verify the user input, and given that secure code review is a relatively new practice, many front-end applications lack sufficient input checking to prevent SQL injection attacks.

The complexity of DBMS code and its focus on user functionality and data manipulation capacity also create increased opportunities for successful attack. If the developers do not understand the security impact, the chances for software flaws that allow SQL injection to occur are greatly increased.

VI. FUTURE OF SQL INJECTION AS AN ATTACK METHODOLOGY

Future of SQL Injection depends on two main point, first is Defensive responses and second is Level of interest by researchers.

As the popularity of SQL injection has grown, Database Company has begun to evaluate their database code for security issues as have the other database vendors. They have begun to incorporate security into their product line and are moving more quickly to resolve security issues associated with SQL injection-based attacks. Database and systems administrators harden both the database and the operating system as much as possible prior to deploying the system for production use. The programmers responsible for writing major enterprise applications have begun to review user input more closely and incorporating more stringent security techniques into the code, making new versions of their software more resistant to the known forms of SQL injection. Scripting languages such as PHP now include variable content filtering that scrubs SQL queries before they are sent to the database.

VII CONCLUSION
 In this paper , we have presented a survey and comparison of cur-rent techniques for detecting and preventing SQLIAs . To perform this evaluation, we ﬁrst identiﬁed the various types of SQLIAs known to date. We then evaluated the considered techniques in terms of their ability to detect and / or prevent such attacks. We also studied the different mechanisms through which SQLIAs can be introduced into an application and identiﬁed which techniques were able to handle which mechanisms. Lastly we learn sql injection as an attack methodology.
VIII REFERENCES

[1]C.Anley. Advanced SQL Injection In SQL Server Applications. Whitepaper, Next Generation Security Software Ltd., 2002.

[2]C.Anley.(more)Advanced SQL Injection . Whitepaper, Next Generation Security Software Ltd., 2002.

[3]D.Aucsmith. Creating and Maintaining Software that resists amaliciousAttack.http://www.gtisc.gatech.edu/bioaucsmith.html,September2004. Distinguished Lecture Series.

[4]F.Bouma.Stored Procedures are Bad , O’kay ? Technical report,Asp.Net Weblogs , November2003 . http://weblogs.asp.net/fbouma/archive/2003/11/18/38178.aspx.

[5] Halfond, W. G., Jeremy Viegas, and Alessandro Orso. "A classification of SQL-injection attacks and countermeasures." Proceedings of the IEEE International Symposium on Secure Software Engineering. IEEE, 2006.
[6] Anley, Chris. "Advanced SQL injection in SQL server applications." White paper, Next Generation Security Software Ltd (2002).
[7] Ezumalai, R., and G. Aghila. "Combinatorial Approach for Preventing SQL Injection Attacks." Advance Computing Conference, 2009. IACC 2009. IEEE International. IEEE, 2009.
[8] Clarke, Justin. SQL injection attacks and defense. Syngress Publishing, 2012.

ISSN: 0975 – 6760| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE – 02
Page 167

