
JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN

COMPUTER ENGINEERING

ISSN: 0975 – 6760| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE – 02 Page 447

CRYPTOGRAPHIC ALGORITHMS FOR WIRELESS

SENSOR NETWORK

1
 Pinak M. Popat,

2
 Pooja A. Vaishnav,

3
Ankita M. Parmar,

4
Bhumi K. Padodara

1
 PG Student (Department of Computer Engineering) Marwadi College, GTU, Rajkot, Gujarat, India.

2
PG Student (Department of Computer Engineering) VVP Engineering College, GTU, Rajkot, Gujarat.

3
PG Student (Department of Computer Engineering) VVP Engineering College, GTU, Rajkot, Gujarat.

4
PG Student (Department of Computer Engineering) VVP Engineering College, GTU, Rajkot, Gujarat.

1
pinak.popat@ymail.com,

 2
 pooja.vaishnav@ymail.com,

3
ankita.parmar2188@gmail.com,

4
bhoomi.padodara@gmail.com

ABSTRACT: A wireless sensor network (WSN) consists of spatially distributed autonomous sensors to monitor

physical or environmental conditions, such as temperature, sound, pressure, etc. and to cooperatively pass their

control of sensor activity. The development of wireless sensor networks was motivated by military applications

such as battlefield surveillance; today such networks are used in many industrial and consumer applications,

such as industrial process monitoring and control, machine health monitoring, and so on. Many algorithms are

already developed for security in wireless sensor network but with many limitation .For instance key

maintenance is a great problem faced in private key encryption methods and less security level is a problem of

public key encryption methods even though key maintenance is easy .

Keywords—Wireless Sensor Network (WSN), ultra-low power, security, cryptographic, primitives, Message

Authentication Code (MAC), UMAC, OCB.

I: INTRODUCTION
A wireless sensor network (WSN) is one in which

tiny devices (sensor nodes), positioned fairly close to

each other, are used to sense and gather data from

their environment and to exchange information

through wireless connections between these nodes.

Apart from the built-in sensors, these sensor nodes

also have wireless transceivers and power sources

built-in allowing them to work autonomously. Sensor

networks have been undergoing extensive research

and studies in recent years because of their various

potential applications, such as monitoring the safety

and security of buildings or homes (intelligent

buildings and homes), measuring traffic flows,

tracking environmental pollutants, monitoring factory

instrumentations, monitoring temperature and

lightings on a farm or in a greenhouse. Sensor nodes

can even be distributed throughout a bridge allowing

them to continuously sense and monitor the

mechanical stress level of the bridge. In order to

easily deploy a relatively large number of sensor

nodes, the sensor nodes are typically designed for

low price, small size and long operation life, which

causes them to have very limited resources available

(e.g. energy, processing power and memory

size).When speaking of the security of any system, it

can be categorized into three main concerns:

Confidentiality, Integrity and Authenticity (or

sometimes Availability) (C.I.A.).Security primitives

are used to achieve these basic concerns. For

example, encryption algorithms are used to achieve

confidentiality, while cryptographic hash functions or

message authentication codes (MAC) are used for

achieving integrity and authenticity. Over the years,

different security primitives have been proposed and

refined aiming at utilizing modern processing power

e.g. 32-bit or 64-bit systems, SIMD (Single

Instruction Multiple Data) architecture such as MMX

(Multi Media Extension) etc. In other words, security

primitives have targeted the high-end systems (e.g.

desktop or server) in software implementations.

Several hardware-oriented security primitives have

also been proposed. However, most of them have

been designed aiming only at large messages and

high-speed processing, with no power consumption

or other resources (such as memory space) taken into

consideration. As a result, security mechanisms for

ultra-low power devices such as wireless sensor

nodes must be carefully selected or designed with

their limited resources in mind. Ultra-low power at

the moment is typically referring to power

consumption less than 500µW.

II:SECURITY IN WIRELESS SENSOR

NETWORK

Security in any network system does not simply

involve only one or two layers, but rather needs to be

viewed across all layers as a whole. The security

issues for a conventional network differ greatly to the

security issues in WSNs because of the extremely

limited resources available in sensor nodes. This

chapter provides an overview of security

considerations in the context of the WSN.

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN

COMPUTER ENGINEERING

ISSN: 0975 – 6760| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE – 02 Page 448

Trust Models

One or more base stations often exist in WSN. Base

stations are more powerful nodes with rich

computational, memory, energy and radio resources.

By radio resources it means that they have more

powerful transceivers for a wider communication

range and higher bandwidth links for communication

amongst other base stations. A base station may exist

in the form of a PC or server, where the sensor data

flows to and is stored. Therefore they are also known

as sink nodes. Base stations may act as a gateway

between WSN and another network; therefore may be

connected to an outside TCP/IP network. These

resourceful nodes are sometimes also known as rich

uncles [5]. Base stations are more expensive nodes,

and are often assumed to be physically protected or

have tamper-proof hardware.

As a result, in a WSN environment, a base station

usually plays the role of a central trusted authority

(point of trust). A point of trust base station is what

the other standard sensor nodes trust for its

authenticity and accepts the keys managed by the

base station. In a base station trust model, for two

nodes to communicate directly with each other, they

need to first rely on the base station to establish a

shared secret key between them before

communication can take place. However, scalability

may become a problem for base stations. If every

sensor node in the network has a unique secret key,

then for two nodes to communicate with each other

they need to first go through the trusted base station

to establish a shared secret key. If every node needs

to communicate with its neighboring nodes, then the

base station becomes a scalability bottleneck. This

paper also assumes the base station as the trusted

authority in the trust model.

III: CRYPTOGRAPHIC CIPHERS

Cryptographic ciphers often provide the most basic

security requirements such as confidentiality

,authenticity and integrity checking in any system.

However, not all cryptographic ciphers that are

suitable for conventional networks will also be

suitable for WSNs. This chapter discusses security

primitives through the use of cryptographic ciphers

and their applicability to the ultra-low power WSN

environment. The background of block ciphers as

well as modes of operation are investigated and

discussed here. The only stream cipher implemented

in this paper, RC4, is also discussed here.

 TEA

TEA (Tiny Encryption Algorithm) [3] and its related

variants (XTEA, Block TEA, XXTEA) are

symmetric key block ciphers designed for modern

32-bit word architecture.The emphasis of TEA is on

small code size and easy implementation with

typically few lines of codes. It uses a large number of

iterations rather than a complicated algorithm. All

TEA and its variants are based on the Feistel

structure, every TEA cycle consists of two Feistel

rounds (Figure 4.1).TEA and XTEA operate on two

32-bit words as a 64-bit data blocks with a 128-bit

key, therefore all operations are done in 32-bit words.

Block TEA and XXTEA operate on variable-length

blocks of arbitrary multiples of 32 bits size. The

advantage of Block and XXTEA is that it eliminates

the need for using a mode of operation (CBC, OFB,

CFB, OCB etc.) on messages larger than one block.

i.e. they can be applied directly to a complete

message.

Fig.1 One TEA cycle (two Feistel rounds) [3].

Cryptanalysis of TEA
TEA suffers from two types of cryptanalysis, the

related-key [9] and equivalent-key [8] attacks. The

equivalent-key attack is targeted at TEA’s extremely

simple key-schedule.This results in the problem that

when flipping the most significant bits of the first two

32-bit words of the key, the encryption will not be

affected. This attack has allowed hackers to

successfully run Linux operating system on the

Microsoft’s Xbox gaming console. The best related-

key attack on TEA requires 223 chosen plaintexts

and 232 computation time to recover the key. XTEA

is proposed by TEA designers to prevent weaknesses

found in TEA. The best attack so far on XTEA is a

related-key differential attack on 27 rounds [10].This

attack requires 220.5 chosen plaintexts and has a time

complexity of 27-round XTEA encryptions.for

minimum of drag. Here inlet velocity is taken as 40

m/s and k-e turbulence model is selected for

capturing turbulent motion of vortices [5].

SAFER K-64

SAFER K-64 [4] (stands for Secure And Fast

Encryption Routine with a Key of length 64 bits) is a

non-proprietary secret (symmetric) key block cipher.

The block length is 64 bits (8 bytes) and only byte

operations are used for key scheduling, encryption

and decryption.The encryption structure of SAFER

K-64 is shown in the following figure

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN

COMPUTER ENGINEERING

ISSN: 0975 – 6760| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE – 02 Page 449

Fig 3. Encryption structure of SAFER K-64.

The encryption/decryption algorithm consists of r

rounds, typically 6 rounds are recommended. Each

round (shown in Figure 4.4) requires two 64-bit (8

bytes) subkeys and the output transformation needs

one 64-bit subkey. In total 2r + 1 subkeys are needed,

which is derived from the user-selected secret key

“K1”. The output transformation involves byte XOR

and byte addition (modulo 256) of the last subkey

(K2r + 1) with output from the r-th round. The

decryption structure is similar to the encryption

structure except that the output transformation now

becomes the input transformation and is executed

first. The subkeys in the decryption structure are also

used in a reversed order.

Fig 4 One encryption round structure of SAFER K-

64.

TREYFER

TREYFER is a 64-bit block cipher with 64-bit

symmetric key and is proposed by Yuval [4]. It is

aimed at applications with extremely limited

resources, e.g. smart card and is designed to be very

compact (less than 50 bytes of code on an 8051

microcontroller with assembler language). It can be

executed on a very constrained architecture, for

example an 8051 microcontroller with typically 1 KB

flash EPROM, 64 bytes RAM, 128 bytes EPROM

and a peak instruction rate of 1 MHz. TREYFER is

designed to use only byte operations and requires

fixed bit rotations and modulo 256 additions. The

algorithm is as

for (r = 0; r < NumRounds; r++){

text[8] = text[0];

for(i = 0; i < 8; i++)

text[i+1] = (text[i+1] +

Sbox[(key[i]+text[i])%256]) <<< 1;

//rotate 1 left

Text[0] = text[8];

}
In the above pseudo code, “text” represents the 8-

byte plaintext, “Sbox” is the 256×8-bit (256 bytes) S-

box chosen at random, and “NumRounds” is the

number of rounds executed in TREYFER, which is

typically 32. One of the motivations of the

TREYFER design is the use of a large number of

rounds (32) to thwart any possible practical attacks in

spite of the simple round function design. The S-box

was suggested by the author to be taken from another

place in the memory running non-cryptographic

codes. In this way there is no need to explicitly define

a 256-byte S-box and thus code space is saved.

AES

AES (Advanced Encryption Standard) was published

by NIST (National Institute of Standards and

Technology) to replace DES (Data Encryption

Standard). Out of the many candidates for AES, the

Rijndael cipher was eventually selected to become

the new AES [8]. AES is a symmetric key block

cipher with a block size of 128 bits and three key size

alternatives of 128, 192, or 256 bits. Unlike many

conventional symmetric key block ciphers, AES does

not use the Feistel structure, where typically half of

the data block is used to modify the other half of the

data block before the two halves are swapped in the

next round. AES processes the entire data block (128

bits) in parallel during each round. AES typically has

10 rounds; each round has four different stages, one

of permutation and three of substitution. The

encryption and decryption functions in AES differ.

The encryption and decryption speed does not vary

significantly, however, the key setup performance is

slower for decryption and requires more memory

than for encryption. All AES operations can be byte

operations allowing it to be efficiently implemented

on 8-bit processors. Its operations can also be defined

in 32-bit words for efficient implementation on 32-bit

processors [2].Although AES has been well studied

over the years and proven to be secure, it does not

seem to be suitable for the platform which this paper

is based on, or in many other WSN environments.

One of the main reasons is that although AES has

been designed for lowend 8-bit microcontroller, its

baseline version still uses over 800 bytes of look-up

tables. A speed optimized AES version, which runs

about 100 times faster, uses over 10 KB of lookup

tables. This memory requirement is not acceptable to

many sensor node platforms. For example, the

microcontroller MSP430F1232 used in the sensor

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN

COMPUTER ENGINEERING

ISSN: 0975 – 6760| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE – 02 Page 450

nodes (TinyMote) of this paper has only 8KB of flash

code memory in total. Apart from the large code size,

AES also requires large RAM space to store

expanded subkeys, typically larger than 156 bytes.

Furthermore, because of the small packet size of

WSN, a cipher with 128-bit (16 bytes) block size

may not be very efficient. For example the last cipher

call may only need to encrypt the last two bytes of

the data packet, since the cipher uses 16-byte block.

 RC5

RC5 is a symmetric encryption algorithm with a

block size of 32, 64, or 128 bits [2]. The key length

ranges from 0 to 2040 bits. RC5 encrypts two-word

blocks, for example a 32-bit block has a word size of

16-bit. The maximum number of RC5 rounds is 255,

but typically 12 rounds encryption/decryption

algorithm is suggested.RC5 has a simple structure

similar to a Feistel structure. Instead of half of a

block being updated as in the classic Feistel structure,

both halves are updated in each RC5 round [6]. RC5

uses only three primitive operations: modulo

2naddition/subtraction (n is the word size), XOR, and

circular rotation. The encryption/decryption

algorithm is very simple and can be implemented in

few lines of codes. These characteristics make RC5

suitable for both hardware and software

implementations. RC5 requires complex key

expansion operations on user-selected secret keys.

The number of sub keys that are needed is 2r + 2,

where r is the total number of rounds .RC5 has also

been around for some years and appears to be secure.

Although it was designed to be of small size for

efficient software and hardware implementation, its

smallest word size is still 16-bit. The key setup

operations have been shown to be very time

consuming [5] and also require a relatively large

amount of RAM space to store the expanded subkeys

[11]. Furthermore, RC5 rotation operations are data-

dependent, meaning that it has to rotate variable

number of bits and often requires a large number of

bit rotations. This large number of bit rotations is

especially time consuming for processors with a word

size smaller than that of the RC5 word size (e.g. 16-

bit RC5 word on an 8-bit processor).Law et. al. [5]

have compared RC5, AES and several other block

ciphers on the same family of microcontrollers (TI

MSP430) as the one used in this paper. These

comparisons have shown that RC5 is not the most

efficient cipher nor does it have the smallest code

size..

III. Conclusion
The well known AES and the WSN-popular RC5

block ciphers have been shown to be not very

suitable for WSN. The block cipher SAFER K-64 has

been investigated for the first time for its

applicability in WSN. Compared to other block

ciphers investigated for WSN environment, SAFER

K-64 achieves the best performance in CPU usage

known to the author. It, however, requires slightly

more RAM. XTEA requires a fairly small amount of

flash/ROM memory and no RAM is needed for the

subkeys setup. Even though XTEA is designed for a

32-bit architecture, it performed well on the 16-bit

MSP430 platform and outperformed both AES and

RC5 on the same MSP430 platform. Although

TREYFER requires the least flash memory and also

does not need RAM for the subkey setup, it requires a

considerable number of CPU cycles.

REFRENCES
[1] A. Perrig, R. Szewczyk, V. Wen, D. Culler and

J.D.Tygar, “SPINS: Security Protocols for Sensor

Networks”, Proceedings of 7th Annual International

Conference on Mobile Computing and Networks

(Mobicom), pp. 189-199, Rome, Italy, 2001.

[2] Alfred J. Menezes, Paul C. van Oorschot and

Scott A. Vanstone, Handbook of Applied

Cryptography, 5th ed., CRC Press, 1996.[3] C.

Karlof and D. Wagner, “Secure Routing in Wireless

Sensor Networks: Attacks and Countermeasures”,

Proceedings of the 1st IEEE International Workshop

on SensorNetwork Protocols and Applications

(SPNA), pp. 113-127, Anchorage, USA, May

2003.

[4] P. Ganesan, R. Venugopalan, P. Peddabachagari

et. al., “Analyzing and Modeling Encryption

Overhead for Sensor Network Nodes”, Proceedings

of the 2nd ACM international conference on Wireless

sensor networks and applications, San Diego, USA,

2003.[5] Y. Law, S. Dulman, S. Etalle et. al.,

“Assessing Security-Critical Energy-Efficient Sensor

Networks”, Department of Computer Science,

University of Twente, Tech.Rep. TR-CTIT-02-18,

2002.

[6] C. Karlof, N. Sastry and D. Wagner, “TinySec: A

Link Layer Security Architecture for Wireless Sensor

Networks”, Proceedings of the 2nd ACM Conference

onEmbedded Networked Sensor System (SenSys), vol.

47 issue 6, Baltimore, USA, November 2004.

[7] S. Mahlknecht, “Energy-Self-Sufficient Wireless

Sensor Networks for the Home and Building

Environment”, Doctor’s thesis, Technical University

of Vienna, 2004.[8] H. Y. Yang, H. Luo, F. Ye et. al.,

“Security in Mobile Ad Hoc Networks: Challenges

and Solutions”, IEEE Wireless Communications

Magazine, pp. 38-47, February 2004.

[9] E. Shi and A. Perrig, “Designing Secure Sensor

Networks”, IEEE WirelessCommunications

Magazine, pp. 38-43, December 2004.

[10] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam

and E. Cayirci, “A Survey on Sensor Networks”,

IEEE Communications Magazine, pp. 102-114,

August 2002.

[11] Y. Chun Hu, A. Perrig, and D. Johnson,

“Ariadne: A Secure On-demand Routing Protocol for

Ad Hoc Networks”, Proceedings of 8th Annual

International Conference on Mobile Computing and

Networks (Mobicom), Atlanta, USA, September

2002.

