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Abstract 

 

The consensus operator provides a method for combining possibly conflicting beliefs within the Dempster-

Shafer belief theory, and represents an alternative to the traditional Dempster’s rule. In everyday discourse 

dogmatic beliefs are expressed by observers when they have a strong and rigid opinion about a subject of 

interest. Such beliefs can be expressed and formalised within the Demspter- Shafer belief theory. This paper 

describes how the consensus operator can be applied to dogmatic conflicting opinions, i.e. when the degree of 

conflict is very high. It overcomes shortcomings of Dempster’s rule and other operators that have been proposed 

for combining possibly conflicting beliefs. 

Key words: Dempster’s rule, belief, conflict, consensus operator, subjective logic 

1 Introduction 

 

Ever since the publication of Shafer’s book A 

Mathematical Theory of Evidence. there has been 

continuous controversy around the so-called  

 

Dempster’s rule. The purpose of Dempster’s rule is 

to combine two conflicting beliefs into a single 

belief that reflects the two conflicting beliefs in a 

fair and equal way. Dempster’s rule has been 

criticised mainly because highly conflicting beliefs 

tend to produce counterintuitive results. The 

problem with Dempster’s rule is due to its 

normalisation which redistributes conflicting belief 

masses to nonconflicting beliefs, and thereby tends 

to eliminate any conflicting characteristics in the 

resulting belief mass distribution. 

 

2 Dempster’s rule 

 

Dempster’s rule allows one to combine evidence 

from different sources and arrive at a degree of 

belief (represented by a belief function) that takes 

into account all the available evidence. The theory 

was first developed by Arthur P. Dempster and 

Glenn Shafer. 

Dempster–Shafer theory is a generalization of the 

Bayesian theory of subjective probability; whereas 

the latter requires probabilities for each question of 

interest, belief functions base degrees of belief (or 

confidence, or trust) for one question on the 

probabilities for a related question. These degrees 

of belief may or may not have the mathematical 

properties of probabilities; how much they differ 

depends on how closely the two questions are 

related. Put another way, it is a way of representing 

epistemic plausibilities but it can yield answers that 

contradict those arrived at using probability theory. 

Often used as a method of sensor fusion, 

Dempster–Shafer theory is based on two ideas: 

obtaining degrees of belief for one question from 

subjective probabilities for a related question, and 

Dempster's rule for combining such degrees of 

belief when they are based on independent items of 

evidence. In essence, the degree of belief in a 

proposition depends primarily upon the number of 

answers (to the related questions) containing the 

proposition, and the subjective probability of each 

answer. Also contributing are the rules of 

combination that reflect general assumptions about 

the data. 

In this formalism a degree of belief (also referred to 

as a mass) is represented as a belief function rather 

than a Bayesian probability distribution. 

Probability values are assigned to sets of 

possibilities rather than single events: their appeal 

rests on the fact they naturally encode evidence in 

favor of propositions. 

Dempster–Shafer theory assigns its masses to all of 

the non-empty subsets of the entities that compose 

a system. 

 

2.1 Belief and plausibility 

 

Shafer's framework allows for belief about 

propositions to be represented as intervals, bounded 

by two values, belief (or support) and plausibility: 

 

belief ≤ plausibility. 

Belief in a hypothesis is constituted by the sum of 

the masses of all sets enclosed by it (i.e. the sum of 

the masses of all subsets of the hypothesis). It is the 

amount of belief that directly supports a given 

hypothesis at least in part, forming a lower bound. 

Belief (usually denoted Bel) measures the strength 

of the evidence in favor of a set of propositions. It 

ranges from 0 (indicating no evidence) to 1 

(denoting certainty). Plausibility is 1 minus the 

sum of the masses of all sets whose intersection 

with the hypothesis is empty. It is an upper bound 

on the possibility that the hypothesis could be true, 

i.e. it “could possibly be the true state of the 

system” up to that value, because there is only so 
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much evidence that contradicts that hypothesis. 

Plausibility (denoted by Pl) is defined to be 

Pl(s)=1-Bel(~s). It also ranges from 0 to 1 and 

measures the extent to which evidence in favor of 

~s leaves room for belief in s. For example, 

suppose we have a belief of 0.5 and a plausibility 

of 0.8 for a proposition, say “the cat in the box is 

dead.” This means that we have evidence that 

allows us to state strongly that the proposition is 

true with a confidence of 0.5. However, the 

evidence contrary to that hypothesis (i.e. “the cat is 

alive”) only has a confidence of 0.2. The remaining 

mass of 0.3 (the gap between the 0.5 supporting 

evidence on the one hand, and the 0.2 contrary 

evidence on the other) is “indeterminate,” meaning 

that the cat could either be dead or alive. This 

interval represents the level of uncertainty based on 

the evidence in your system.

    

            

The null hypothesis is set to zero by definition (it 

corresponds to “no solution”). The orthogonal 

hypotheses “Alive” and “Dead” have probabilities 

of 0.2 and 0.5, respectively. This could correspond 

to “Live/Dead Cat Detector” signals, which have 

respective reliabilities of 0.2 and 0.5. Finally, the 

all-encompassing “Either” hypothesis (which 

simply acknowledges there is a cat in the box) 

picks up the slack so that the sum of the masses is 

1. The belief for the “Alive” and “Dead” 

hypotheses matches their corresponding masses 

because they have no subsets; belief for “Either” 

consists of the sum of all three masses (Either, 

Alive, and Dead) because “Alive” and “Dead” are 

each subsets of “Either”. The “Alive” plausibility is 

1 − m (Dead) and the “Dead” plausibility is 1 − m 

(Alive). Finally, the “Either” plausibility sums 

m(Alive) + m(Dead) + m(Either). The universal 

hypothesis (“Either”) will always have 100% belief 

and plausibility —it acts as a checksum of sorts. 

2.2 Combining beliefs 

 

 

Beliefs from different sources can be combined 

with various fusion operators to model specific 

situations of belief fusion, e.g. with Dempster's 

rule of combination, which combines belief 

constraints that are dictated by independent belief 

sources, such as in the case of combining hints or 

combining preferences. Note that the probability 

masses from propositions that contradict each other 

can be used to obtain a measure of conflict between 

the independent belief sources. Other situations can 

be modeled with different fusion operators, such as 

cumulative fusion of beliefs from independent 

sources which can be modeled with the cumulative 

fusion operator. 

Dempster's rule of combination is sometimes 

interpreted as an approximate generalisation of 

Bayes' rule. In this interpretation the priors and 

conditionals need not be specified, unlike 

traditional Bayesian methods, which often use a 

symmetry (minimax error) argument to assign prior 

probabilities to random variables (e.g. assigning 0.5 

to binary values for which no information is 

available about which is more likely). However, 

any information contained in the missing priors and 

conditionals is not used in Dempster's rule of 

combination unless it can be obtained indirectly—

and arguably is then available for calculation using 

Bayes equations. 

Dempster–Shafer theory allows one to specify a 

degree of ignorance in this situation instead of 

being forced to supply prior probabilities that add 
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to unity. This sort of situation, and whether there is 

a real distinction between risk and ignorance, has 

been extensively discussed by statisticians and 

economists.  

2.3 Formal definition 

Let X be the universal set: the set representing all 

possible states of a system under consideration. 

The power set 

 

is the set of all subsets of X, including the empty 

set . For example, if: 

 

then 

 

The elements of the power set can be taken to 

represent propositions concerning the actual state 

of the system, by containing all and only the states 

in which the proposition is true. 

The theory of evidence assigns a belief mass to 

each element of the power set. Formally, a function 

 

is called a basic belief assignment (BBA), when it 

has two properties. First, the mass of the empty set 

is zero: 

 

Second, the masses of the remaining members of 

the power set add up to a total of 1: 

 

The mass m(A) of A, a given member of the power 

set, expresses the proportion of all relevant and 

available evidence that supports the claim that the 

actual state belongs to A but to no particular subset 

of A. The value of m(A) pertains only to the set A 

and makes no additional claims about any subsets 

of A, each of which have, by definition, their own 

mass. 

From the mass assignments, the upper and lower 

bounds of a probability interval can be defined. 

This interval contains the precise probability of a 

set of interest (in the classical sense), and is 

bounded by two non-additive continuous measures 

called belief (or support) and plausibility: 

 

The belief bel(A) for a set A is defined as the sum 

of all the masses of subsets of the set of interest: 

 

The plausibility pl(A) is the sum of all the masses 

of the sets B that intersect the set of interest A: 

 

The two measures are related to each other as 

follows: 

 

And conversely, for finite A, given the belief 

measure bel(B) for all subsets B of A, we can find 

the masses m(A) with the following inverse 

function: 

 

where |A − B| is the difference of the cardinalities 

of the two sets.  

It follows from the last two equations that, for a 

finite set X, you need know only one of the three 

(mass, belief, or plausibility) to deduce the other 

two; though you may need to know the values for 

many sets in order to calculate one of the other 

values for a particular set. In the case of an infinite 

X, there can be well-defined belief and plausibility 

functions but no well-defined mass function.  

3 Dempster's rule of combination 

The problem we now face is how to combine two 

independent sets of probability mass assignments 

in specific situations. In case different sources 

express their beliefs over the frame in terms of 

belief constraints such as in case of giving hints or 
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in case of expressing preferences, then Dempster's 

rule of combination is the appropriate fusion 

operator. This rule derives common shared belief 

between multiple sources and ignores all the 

conflicting (non-shared) belief through a 

normalization factor. Use of that rule in other 

situations than that that of combining belief 

constraints has come under serious criticism, such 

as in case of fusing separate beliefs estimates from 

multiple sources that are to be integrated in a 

cumulative manner, and not as constraints. 

Cumulative fusion means that all probability 

masses from the different sources are reflected in 

the derived belief, so no probability mass is 

ignored. 

Specifically, the combination (called the joint 

mass) is calculated from the two sets of masses m1 

and m2 in the following manner: 

 
 

 

where 

 

K is a measure of the amount of conflict between 

the two mass sets. 

4 The Consensus Operator 

 

4.1 The Opinion Space 

The consensus operator is not defined for general 

frames of discernment, but only on binary frames 

of discernment. If the original frame of 

discernment is larger than 

binary it is possible to derive a binary frame of 

discernment containing any element A and its 

complement A through simple or normal 

coarsening. After normal coarsening, the relative 

atomicity of A is equal to the relative cardinality of 

A in the original frame of discernment. An opinion 

basically consists of a bba on a (coarsened) binary 

_ with an additional relative atomicity parameter 

that enables the computation of the probability 

expectation value (or pignistic belief) of an 

opinion. 

 

4.1.1 Opinion 

Let θ be a (coarsened) binary frame of 

discernment containing sets A and Ā, and let mX be 

the (coarsened) bba on θ held by X. Let bA
x = 

mX(A), dA
x = mX(Ā) and uA

x = mX(θ)4 be called 

the belief, disbelief and uncertainty components 

respectively, and let aA
x represent the relative 

atomicity of A. Then X’s opinion about A, denoted 

by wA
x , is the ordered tuple: 

wA
x = (bA

x , dA
x, uA

x, aA
x ) 

The belief, disbelief and uncertainty components of 

an opinion represent exactly the same as a bba, so 

the following equality holds: 

bA + dA + uA = 1 ; A € 2
θ

 

Opinions have an equivalent represention as beta 

probability density functions (pdf) denoted by beta 

(œ; ß) through the following bijective mapping: 

 

This means for example that an opinion with uA = 1 

and aA = 0:5 which maps to beta (1; 1) is equivalent 

to a uniform pdf. It also means that a dogmatic 

opinion with uA = 0 which maps to beta (bAN; dAN) 

where N → OO is equivalent to a spike pdf with 

infinitesimal width and infinite height. Dogmatic 

opinions can thus be interpreted as being based on 

an infinite amount of evidence. 

 

4.2.2 The Consensus Operator 

 

The Consensus Operator defined below is derived 

from the combination of two beta pdfs. More 

precisely, the two input opinions are mapped to 

beta pdfs and combined, and the resulting beta pdf 

mapped back to the opinion space again. The 

Consensus Operator can thus be interpreted as the 

statistical combination of two beta pdf 

Let wA
x = (bA

x , dA
x, uA

x, aA
x ) and wA

y = (bA
y , dA

y, 

uA
y, aA

y ) be opinions respectively held by agents X 

and Y about the same element A, and let k = uA
x + 

uA
y - uA

x uA
y. when uA

x, uA
y → 0  the relative 

dogmatism between wA
x and wA

y is defined by 

YA
X/Y so that YA

X/Y =  uA
y/ uA

x. Let wA
x,y = (bA

x,y , 

dA
x,y, uA

x,y, aA
x,y )  be the opinion such that: 
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Then wA

x,y is called the consensus opinion between 

wA
x and wA

y , representing an imaginary agent [X, 
Y ]’s opinion about A, as if that agent represented 

both X and Y . 

The consensus operator is commutative, associative 

and non-idempotent. Associativity in case k = 0. In 

case of two totally uncertain opinions (i.e. u = 1) it 

is required that the observers agree on the relative 

atomicity so that the consensus relative atomicity 

for example can be defined as aA
x,y = aA

x. 

5 Comparison of Combination Rules 

 

In this section, we present several examples in 

order to compare the performance of the different 

rules described in the previous sections. 

  

5.1 Example 1 : One Dogmatic Belief 

Let m1 and m2 represent two distinct  

pieces of evidence about the states in θ = {P1, 

P2}. In this example, we suppose that we want to 

combine a dogmatic belief function m1 with a non-

dogmatic one m2. Table 1 presents these two bba’s 

with the results obtained by the previously 

presented operators.  

 

 

 

5.2 Example 2 : Zadeh’s Example 

 

Suppose that we have a murder case with three 

suspects; Peter, Paul and Mary and two witnesses 

M1 and M2 who give highly conflicting 

testimonies. Table 2 gives the witnesses’ belief 

masses in Zadeh’s example and the resulting belief 

masses after applying Dempster’s rule, the non-

normalised rule and the consensus operator. 

 

5.3 Example 3 : Zadeh’s Example Modified 

 

By introducing a small amount of uncertainty in the 

witnesses testimonies , we get the output as shown 

below. 
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Conclusion 

 

In this paper we have focused on the problem of 

combining highly conflicting and dogmatic beliefs 

within the belief functions theory. The opinion 

metric described here provides a simple and 

compact notation for beliefs in the Shaferian belief 

model.We have presented an alternative to 

Dempster’s rule which is consistent with 

probabilistic and statistical analysis, and which 

seems more suitable for combining highly 

conflicting beliefs as well as for combining 

harmonious beliefs, than Dempster’s rule and its 

non-normalised version. The fact that a binary 

focused frame of discernment must be derived in 

order to apply the consensus operator puts no 

restriction on its applicability. The resulting beliefs 

for each event can still be compared and can form 

the basis for decision making. 
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