
JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN
ELECTRONICS AND COMMUNICATION

ISSN: 0975 – 6779| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE - 02| Page 937

DEVELOPING A VLSI ARCHITECTURE
SIMULATION FOR NEURAL NETWORKS BASED

IMAGE COMPRESSION

1PREM KUMAR , 2G.R.C.KALADHARA SARMA

1 PG SCHOLOR OF AVR&SVR CET,NANDYAL,A.P
2 Asst.PROFESSOR OF AVR&SVR CET,NANDYAL,A.P

grcksrgm@gmail.com

ABSTRACT : This paper reviews the problem of translating signals into symbols preserving maximally the
information contained in the signal time structure. In this context, we motivate the use of nonconvergent
dynamics for the signal to symbol translator. Feedforward neural network structures have extensively been
considered in the literature. In a significant volume of research and development studies hyperbolic tangent
type of a neuronal nonlinearity has been utilized. This paper dwells on the widely used neuronal activation
functions.The viewpoint here is to consider the hidden layer(s) as transforming blocks composed of nonlinear
basis functions, which may assume different forms. This paper considers 8 different activation functions which
are differentiable and utilizes for parameter tuning purposes. The studies carried out have a guiding quality
based on empirical results on several training data sets. With the advent of new technologies and advancement
in medical science we are trying to process the information artificially as our biological system performs inside
our body. Artificial intelligence through a biological word is realized based on mathematical equations and
artificial neurons. Our main focus is on the implementation of Neural Network Architecture (NNA) with on a
chip learning in analog VLSI for (GSP) generic signal processing applications. In the proposed paper analog
components like Gilbert Cell Multiplier (GCM), Neuron activation Function (NAF) are used to implement
artificial NNA. The analog components used are comprises of multipliers and adders’ along with the tan-
sigmoid function circuit using MOS transistor in subthreshold region. This neural architecture is trained using
Back propagation (BP) algorithm in analog domain with new techniques of weight storage. Layout design and
verification of the proposed design is carried out using Tanner EDA 14.1 tool and synopsys Tspice. The
technology used in designing the layouts is MOSIS/HP 0.5u SCN3M, Tight Metal. We present results of
simulations and measurements obtained from a fabricated analog very large scale integration (VLSI) chip.

Keywords :Neural Network Architecture, Back Propagation Algorithm, Analog VLSI implementation, digital
simulation models, neural assemblies

I.Introduction
1.1 Artificial Intelligence
Although many other researchers have investigated
dynamical principles to design and implement
information processing systems (mainly in the
biophysics[1,2]and computational neuroscience
communities [3]), this line of research is still a niche
compared with the statistical approach. We are
slowly realizing that the limited repertoire of
dynamical behavior (fixed points) implemented by
these DCAMs constrain their use as information
processing devices for signals that carry information
in their time structure. For instance, the point
attractor has no dynamical memory (i.e., the system
forgets all previous inputs when it reaches the fixed
point) while the dynamic memory of the limit cycle is
constrained to the period; only chaotic systems
display long-term dynamic memory due to the
sensitivity to initial conditions. This sensitivity
carries the problem of susceptibility to noise, but a

possible solution is to utilize a chaotic attractor
created by a dynamical system with singularities of at
least second order (third-order ODE).A chaotic
attractor is still a stable representation, might exist in
a high-dimensional space (much higher than the
dimensionality of our three-dimensional
world),Intelligence is the computational part of the
ability to achieve goals in the world. Actually
intelligence is a biological word and is acquired from
past experiences. The science which defines
intelligence mathematically is known as Artificial
Intelligence (AI). Artificial Intelligence is
implemented by using artificial neurons and these
artificial neurons comprised of several analog
components. Fig 1 expressed mathematically as

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN
ELECTRONICS AND COMMUNICATION

ISSN: 0975 – 6779| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE - 02| Page 938

Fig1: Neural Network
The proposed paper is a step in the implementation of
neural network architecture[4] using back
propagation algorithm for data compression. The
neuron selected is comprises of multiplier and adder
along with the tan-sigmoid function. The training
algorithm used is performed in analog domain thus
the whole neural architecture is a analog structure.
a = f (P1W1+P2W2+P3W3+Bias)

where is the output of the neuron & is input

and is neuron weight . The bias is optional and
user defined. A neuron in a network is itself a simple
processing unit which has an associated weight for
each input to strengthening it and produces an output.
The working of neuron is to add together all the
inputs and calculating an output to be passed on. The
neural architecture is trained using back propagation
algorithm and also it is a feed forward network. The
designed neuron is suitable for both analog and
digital applications. The proposed neural architecture
is capable of performing operations like sine wave
learning, amplification and frequency multiplication
and can also be used for analog signal processing
activities.
II. MULTIPLE LAYERS OF NEURONS
In machine learning and computational neuroscience,
an artificial neural network, often just named a neural
network, is a mathematical model inspired by
biological neural networks. A neural network consists
of an interconnected group of artificial neurons, and
it processes information using a connectionist
approach to computation. In most cases a neural
network is an adaptive system changing its structure
during a learning phase. Neural networks are used for
modeling complex relationships between inputs and
outputs or to find patterns in data. When a set of
single layer neurons are connected with each other it
forms a multiple layer neurons, as shown in the fig2.

Fig2: Layered structure of Neural Network
As it is clear from the above figure that weights w11
to w16 are used to connect the inputs v1 and v2 to the
neuron in the hidden layer[5]. Then weights w21 to
w23 transferred the output of hidden layer to the
output layer. The final output is a21.
III.ACTIVATION FUNCTION:
In computational networks, the activation function of
a node defines the output of that node given an input
or set of inputs. A standard computer chip circuit can
be seen as a digital network of activation functions
that can be "ON" (1) or "OFF" (0), depending on
input. This is similar to the behavior of the linear
perceptron in neural networks. However, it is the
nonlinear activation function that allows such
networks to compute nontrivial problems using only
a small number of nodes.
3.1.Network Architectures
Two or more of the neurons shown earlier can be
combined in a layer, and a particular network could
contain one or more such layers. First consider a
single layer of neurons.
One Layer of Neurons A one-layer network with R
input elements and S neurons follows as shown in
fig3.

Fig3:layer of Neurons
In this network, each element of the input vector p is
connected to each neuron input through the weight
matrix W. The ith neuron has a summer that gathers
its weighted inputs and bias to form its own scalar

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN
ELECTRONICS AND COMMUNICATION

ISSN: 0975 – 6779| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE - 02| Page 939

output n(i). The various n(i) taken together form an
S-element net input vector n. Finally, the neuron
layer outputs [6]form a column vector a. The
expression for a is shown at the bottom of the figure.
Note that it is common for the number of inputs to a
layer to be different from the number of neurons (i.e.,
R is not necessarily equal to S). A layer is not
constrained to have the number of its inputs equal to
the number of its neurons. You can create a single
(composite) layer of neurons having different transfer
functions simply by putting two of the networks
shown earlier in parallel. Both networks would have
the same inputs, and each network would create some
of the outputs.The input vector elements enter the
network through the weight matrix W.

Note that the row indices on the elements of matrix
W indicate the destination neuron of the weight, and
the column indices indicate which source is the input
for that weight. Thus, the indices in w1,2 say that the
strength of the signal from the second input element
to the first (and only) neuron is w1,2.The S neuron R-
input one-layer network also can be drawn in
abbreviated notation.

Fig4: weight matrix
Here p is an R-length input vector, W is an S × R
matrix, a and b are S-length vectors. As defined
previously, the neuron layer includes the weight
matrix as in fig4, the multiplication operations, the
bias vector b, the summer, and the transfer function
blocks.
Inputs and Layers To describe networks having
multiple layers, the notation must be extended.
Specifically, it needs to make a distinction between
weight matrices that are connected to inputs and
weight matrices that are connected between layers. It
also needs to identify the source and destination for
the weight matrices. We will call weight matrices
connected to inputs input weights; we will call
weight matrices connected to layer outputs layer
weights. Further, superscripts are used to identify the
source (second index) and the destination (first index)
for the various weights[7] and other elements of the

network. To illustrate, the one-layer multiple input
network shown earlier is redrawn in abbreviated form
here.

Fig5: Multiple Layers of Neurons layer weight
As you can see, the weight matrix connected to the
input vector p is labeled as an input weight matrix
(IW1,1) having a source 1 (second index) and a
destination 1 (first index). Elements of layer 1, such
as its bias, net input, and output have a superscript 1
to say that they are associated with the first
layer.Multiple Layers of Neurons uses layer weight
(LW) matrices as well as input weight (IW) matrices.
IV.MULTIPLE LAYERS OF NEURONS
A network can have several layers. Each layer has a
weight matrix W, a bias vector b, and an output
vector a. To distinguish between the weight matrices,
output vectors,[8] etc., for each of these layers in the
figures, the number of the layer is appended as a
superscript to the variable of interest. You can see the
use of this layer notation in the three-layer network
shown next, and in the equations at the bottom of the
fig6.

Fig6: three-layer network
The network shown above has R1 inputs, S1 neurons
in the first layer, S2 neurons in the second layer, etc.
It is common for different layers to have different
numbers of neurons. A constant input 1 is fed to the
bias for each neuron.Note that the outputs of each
intermediate layer are the inputs to the following
layer. Thus layer 2 can be analyzed as a one-layer
network with S1 inputs, S2 neurons, and an S2 × S1
weight matrix W2. The input to layer 2 is a1; the
output is a2. Now that all the vectors and matrices of

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN
ELECTRONICS AND COMMUNICATION

ISSN: 0975 – 6779| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE - 02| Page 940

layer 2 have been identified, it can be treated as a
single-layer network on its own. This approach can
be taken with any layer of the network.The layers [9]
of a multilayer network play different roles. A layer
that produces the network output is called an output
layer. All other layers are called hidden layers. The
three-layer network shown fig7 earlier has one output
layer (layer 3) and two hidden layers (layer 1 and
layer 2). Some authors refer to the inputs as a fourth
layer. This toolbox does not use that designation.The
architecture of a multilayer network with a single
input vector can be specified with the notation R � S1
� S2 �...� SM, where the number of elements of the
input vector and the number of neurons in each layer
are specified.The same three-layer network can also
be drawn using abbreviated notation.

Fig7: multilayer network with a single input vector
Multiple-layer networks are quite powerful. For
instance, a network of two layers, where the first
layer is sigmoid and the second layer is linear, can be
trained to approximate any function (with a finite
number of discontinuities) arbitrarily well. This kind
of two-layer network is used extensively in
Multilayer Networks and Backpropagation Training.
Here it is assumed that the output of the third layer,
a3, is the network output of interest, and this output is
labeled as y. This notation is used to specify the
output of multilayer networks.
V.INPUT AND OUTPUT PROCESSING
FUNCTIONS
Network inputs might have associated processing
functions. Processing functions transform user input
data to a form that is easier or more efficient for a
network.
For instance, mapminmax transforms input data so
that all values fall into the interval [�1, 5.1.This can
speed up learning for many networks.
removeconstantrows removes the rows of the input
vector that correspond to input elements that always
have the same value, because these input elements
are not providing any useful information to the
network. The third common processing function is
fixunknowns, which recodes unknown data

(represented in the user's data with NaN values) into
a numerical form [10]for the network. fixunknowns
preserves information about which values are known
and which are unknown.Similarly, network outputs
can also have associated processing functions. Output
processing functions are used to transform user-
provided target vectors for network use. Then,
network outputs are reverse-processed using the same
functions to produce output data with the same
characteristics as the original user-provided targets.
Both mapminmax and removeconstantrows are often
associated with network outputs. However,
fixunknowns is not. Unknown values in targets
(represented by NaN values) do not need to be altered
for network use.
5.2 Analog Components for Neural Architecture The
inputs to the neuron v1 and v2 as shown in figure 2
are multiplied by the weight matrix, the resultant
output is summed up and is passed through an NAF.
The output of the activation function is then passes to
the next layer for further processing. Blocks to be
used are Multiplier block, Adders, NAF block with
derivative.
In biologically inspired neural networks, the
activation function is usually an abstraction
representing the rate of action potential firing in the
cell. In its simplest form, this function is binary—that
is, either the neuron is firing or not. The function

looks like , where is the
Heaviside step function. In this case a large number
of neurons must be used in computation beyond
linear separation of categories.
A line of positive slope may also be used to reflect
the increase in firing rate that occurs as input current
increases. The function would then be of the form

, where is the slope. This
activation function is linear, and therefore has the
same problems as the binary function.[11]In addition,
networks constructed using this model have unstable
convergence because neuron inputs along favored
paths tend to increase without bound, as this function
is not normalizable.
All problems mentioned above can be handled by
using a normalizable sigmoid activation function.
One realistic model stays at zero until input current is
received, at which point the firing frequency
increases quickly at first, but gradually approaches an
asymptote at 100% firing rate. Mathematically, this

looks like , where
the hyperbolic tangent function can also be any
sigmoid. This behavior is realistically reflected in the
neuron, as neurons cannot physically fire faster than a
certain rate. This model runs into problems, however,
in computational networks as it is not differentiable, a
requirement in order to calculate backpropagation.
The final model, then, that is used in multilayer
perceptrons is a sigmoidal activation function in the
form of a hyperbolic tangent. Two forms of this
function are commonly used:

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN
ELECTRONICS AND COMMUNICATION

ISSN: 0975 – 6779| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE - 02| Page 941

whose range is normalized
from -1 to 1, and

is vertically
translated to normalize from 0 to 1. The latter model
is often considered more biologically realistic, but it
runs into theoretical and experimental difficulties
with certain types of computational problems.
VI.ALTERNATIVE STRUCTURES
A special class of activation functions known as
radial basis functions (RBFs) are used in RBF
networks, which are extremely efficient as universal
function approximators. These activation functions
can take many forms, but they are usually found as
one of three functions:

Gaussian:

Multiquadratics:

Inverse multiquadratics:
where is the vector representing the function center
and and are parameters affecting the spread of
the radius.Support vector machines (SVMs)[12] can
effectively utilize a class of activation functions that
includes both sigmoids and RBFs. In this case, the
input is transformed to reflect a decision boundary
hyperplane based on a few training inputs called
support vectors . The activation function for the
hidden layer of these machines is referred to as the

inner product kernel, . The
support vectors are represented as the centers in
RBFs with the kernel equal to the activation function,
but they take a unique form in the perceptron as

,

where and must satisfy certain conditions for
convergence. These machines can also accept
arbitrary-order polynomial activation functions where

.[1]
6.1.Activation function having types:
1. Identity function.
2. Binary step function.
3. Bipolar step function.
4. Sigmoidal function.
5. Binary sigmoidal function.
6. Bipolar sigmoidal function.
7. Ramp function.
6.2. Multiplier Block
The Gilbert cell is used as the multiplier block. The
schematic of the Gilbert cell is as shown in the fig8.

Fig8: Gilbert cell schematic with current mirror
circuit
As in this paper we are mainly focusing on layout
part so the layout of the Gilbert cell multiplier is
shown in fig9 and 10. Layout design and verification
[13]of the proposed design is carried out using
Tanner EDA 14.1 tool and synopsys Tspice. The
technology used in designing the layouts is
MOSIS/HP 0.5u SCN3M, Tight Metal.

Fig9: Layout of Gilbert cell multiplier Fig10:
Schematic of NAF
Adders:The output of the Gilbert cell is in the form of
current (trans conductance).The node of the Gilbert
cell connecting the respective outputs act as adder
itself.
VII. Neuron Activation Function (NAF)
The designed activation function is tan sigmoid. The
proposed design is actually a differential amplifier
modified for differential output. Same circuit is
capable of producing output the activation function
and the differentiation of the activation function.
Here two designs are considered for NAF
1. Differential amplifier as NAF
2. Modified differential amplifier as NAF with
differentiation output.

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN
ELECTRONICS AND COMMUNICATION

ISSN: 0975 – 6779| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE - 02| Page 942

7.1. Differential Amplifier Design As A Neuron
Activation Function (Tan) This block is named as tan
in the final schematics for Neural Architecture.
Differential amplifier when design to work in the
sub-threshold region acts as a neuron activation
function.
7.2 Modified Differential Amplifier Design for
Differentiation Output (fun) Schematic of the design
shown in the fig10 is used for the tan sigmoid
function generator with modification for the
differential output. The NAF function[14] can be
derived from the same differential pair configuration.
The structure has to be modified for the differential
output.
7.3 Layout issues:As we already discussed that we
are using tan sigmoid function to realize NAF the
reason behind using tan sigmoid function is that after
carried out a mathematical analysis we found that tan
sigmoid function is best suitable for compression and
achieving a tangential output. The layout of NAF is
shown in fig11.

Fig10:Layoout of NAF Fig11:Implementation of the
NA using Analog Blocks
VIII.REALIZATION OF NEURAL
ARCHITECTURE USING ANALOG
COMPONENTS
The components designed in the previous section are
used to implement the neural architecture. The tan
block is the differential amplifier block designed in
section 2.1.3.1. This block is used as the neuron
activation function as well as for the multiplication
purpose. The mult is the Gilbert cell multiplier
designed in section 7.1 The fun is the Neuron
activation function circuit with differential output
designed in section 7.2.Fig12 shows exactly how the
neural architecture of fig2 is implemented using
analog components. The input layer is the input to the
2:3:1 neuron. The hidden layer is connected to the
input layer by weights in the first layer named as w1i.
The output layer is connected to input layer through
weights w2j. The op is the output of 2:3:1 neuron.
The schematic of circuit for image compression is
shown in figure 8.

 Fig12 a]&b]Basic Back-Propagation Neural
Network for image compression

Fig 13: Schematic of Compression Block Fig 14:
Layout of compression block

The Layout of circuit for image compression is
shown in figure 9.
The improved back propagation algorithm which is
used in this Fig13]&14] can be summarized
Initialize all the weights and biases to a small number
(approx between -1 and +l.)and input vector, x and
desired output vector, d.Compute the actual outputs
of the network defined.
8.1 Neuron Application -Image Compression and
Decompression The above proposed NA is used for
image compression. Image consisting of pixel
intensities are fed to the network shown in Figure 8
for compression and then this compressed image act
as input for the decompression block. The layout
circuit of decompression block is as shown in fig15.
The 2:3:1 neuron proposed has an inherent capability
of compressing the inputs, [11,12] as there are two
inputs and one output. The compression achieved is
97.30%. Since the inputs are fed in the analog form
to the network there is no need for analog to digital
converters.Fig16 shows the schematic of
decompression block

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN
ELECTRONICS AND COMMUNICATION

ISSN: 0975 – 6779| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE - 02| Page 943

Fig15 : Schematic of Decompression Block
Fig16 : Layout of Decompression Block

This is one of the major advantages of this work. A
1:3:2 neural networks is designed for the
decompression purpose. The neural network has 3
neurons in the hidden layer and two in the output
layer.

Fig17 shows the compression and decompression
scheme. The training algorithm used in this network
is Back Propagation algorithm. The error propagates
from decompression block to the compression bock.
Once the network is trained for different inputs the
two architectures are separated and can be used as
compression block and decompression block
independently.

Fig17: Image Compression and Decompression using
proposed neural architecture
The layout implementation of block diagram of
compression and decompression block is shown in
fig18shows the combined schematic of compression
[13,14] and decompression block.Fig:18 Combined
Schematic of Compression and Decompression
Block.The layout implementation of block diagram
of compression and decompression block is shown in
fig13&14 shows the combined schematic of
compression and decompression block:

Fig18: Combined Layout of Compression and
Decompression block
IX.BACK PROPAGATION ALGORITHM
Backpropagation is the most common method of
training of artificial neural network so as to minimize
the objective function. It is the generalization of delta
rule and mainly used for feed forward networks. The
backpropagation algorithm is understand by dividing
it into two phases. First phase is propagation and
second is weight update.
1) Read the image
2) Divide it into the blocks of pixels
3) Scan each block
4) Appling each scanned vector to input neuron
5) Hidden layer
6) Train the network
7) Re adjust the weights
8) Read the next block
9) Repeat all the steps until the desired error
value
9.1. Propagation
a) Forward propagation of training patterninput
through the neural network in order to
generate the propagation output activations.
b) Backward propagation of the of the propagation

output activations through the neural
network using the training pattern target in order
to generate the deltas of all output and
hidden in neurons.
9.2. Weight Update
a) For each weight synapse it multiply its output delta
and input activation to get the
gradient of the weight.
b) Bring the weight in opposite direction of the
gradient by subtracting a ratio of it from the weight.
This ratio influences the speed and quality of
learning[15,16] and it is called learning rate. The sign
of the gradient of a weight indicates where the error
is increasing, that is why the weight must be updated
in the opposite direction. These phases goes on
repeating until the performance is of the network is
satisfactory.

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN
ELECTRONICS AND COMMUNICATION

ISSN: 0975 – 6779| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE - 02| Page 944

Fig19: Notation for three-layered network
There are (n + 1) × k weights between input sites and
hidden units and (k +1)×m between hidden and
output units. Let W1 denote the (n+1)×k matrix with
component wij

(1) at the i-th row and the j-th column.
Similarly let W2 denote the (k + 1) × m matrix with
components wij

(2).We use an overlined notation to
emphasize that the last row of both matrices
corresponds to the biases of the computing units. The
matrix of weights without this last row will be needed
in the backpropagation step. The n-dimensional input
vector = (o1, . . . , on) is extended, transforming it
to ˆo = (o1, . . . , on, 1). The excitation netj of the j-th
hidden unit is given by:

The activation function is a sigmoid and the output
Oj(1) of this unit is thus

After choosing the weights of the network randomly,
the backpropagation algorithm is used to compute the
necessary corrections.

Fig20.The algorithm can be decomposed in the
following four steps:
(i) Feed-forward computation
(ii) Backpropagation to the output layer
(iii) Backpropagation to the hidden layer
(iv) Weight updates

The algorithm is stopped when the value of the error
function has become sufficiently small.and use
following steps
Step 1: Initialize all the weights and biases to a small
number (approx between -1 and +l.)
Step 2: Read the input vector, x and desired output
vector, d.
step 3: Compute the actual outputs of the network
defined as

where the function f(*) is the nonlinear activation
function.
Step 4: Adjust the weights by

Compute derivatives using method of finite
differences each weight in turn and approximate
derivatives by

Accuracy improved by make e smaller until round-
off problems Arise
X.RESULTS AND DISCUSSIONS
10.1.SIMULATION RESULT FOR GILBERT
CELL MULTIPLIER
The designed Gilbert cell is simulated using TSPICE.
The simulation result shown in the figure 16 is for the
multiplication of two voltages v1 and v2. v1 voltage
is 4 Vpp and 100 MHz frequency. v2 is 2 Vpp 10
MHz frequency.
simulated results are(using matlab)

Fig21.The output wave is the multiplication of v1 and
v2 voltage done by the circuit. The output amplitude
is 5.6 Vpp. The output can be seen matching with the
theoretical output.

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN
ELECTRONICS AND COMMUNICATION

ISSN: 0975 – 6779| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE - 02| Page 945

Fig22: Multiplication operation of Gilbert cell
multiplier
10.1. Simulation Result for Neuron activation
function

Fig23: Circuit o/p for Neuron Activation function
block (tan)
Fig24: Simulation of Image compression
10.2 Image Compression using Neural Architecture
Image compression is separately performed using
neural architecture. The simulation result[17,18,19]
for image compression are shown in the figure 18
The input v1 was a sine wave with 2 Vpp voltage at
10 MHz frequency and input v2 was a sine wave with
4 Vpp at a frequency 100 MHz. The output of
compression is a DC signal of 70 mV.
10.3 Image Decompression using Neural
Architecture The separate decompression of a 3 Vpp
sine wave at 100 MHz gives the decompressed output
as a signal of 7 Vpp. The simulation result of image
decompression is shown in figure 19.

Fig25: Sim. of Image
decompression
Fig26:Imagecompression&Decompression Sim.
Image Compression and Decompression using Neural
Architecture The Neural Architecture is extended for

the application of image compression and
decompression.
Fig:27a]&b]Micro wind Simulated results

The simulation result for image compression and
decompression are shown in the fig27. The input 1
was a sine wave with 16 Vpp voltage 10 MHz
frequency and input 2 was a sine wave with 9 Vpp
voltage and 100 MHz frequency. The compressed
output was a DC signal of 4 Vpp.The decompressed
output for input 1 was a 4.5 Vpp sine wave and for
input 2 was a 4.5 Vpp sine wave[20]. The
compression we achieved is 97.22 % and the average
decompression achieved is 60.94%.
XII.CONCLUSION
Neural network with their remarkable ability to
derive meaning from complicated or imprecise data
can be used to extract patterns and to detect trends
that are too complex to be noticed by either humans
or other computer techniques. with the above results
firstly we say that the selection of neural network
algorithm for the fast compression is done using
MATLAB simulation tool, we conclude that the
improved back propagation algorithm is used For the
test case standard cameramen image the efficiency
is decreased by 0.27 percentage and the converges
time increased by 90.63 percentage and its analog
architecture and schismatic is implemented in micro
wind tool Due to its adaptive learning, self-
organization, real time operations and fault tolerance
via redundant information coding properties it can be
used in Modelling and Diagnosing the
Cardiovascular System and in Electronic noses which
has several potential applications in telemedicine.
Another application developed was “Instant
Physician” which represents the “best” diagnosis and
treatment. This work can be further extended to
implement neuro fuzzy system with high speed low
power, CMOS circuit (Layout extraction) in current
mode as well as for nano scale circuit simulation
using Double Gate MOSFET (DG MOSFET)
modeling.
XIII.REFERENCES
[1]L. Giles, C. Miller, D. Chen, H. Chen, G. Sun, and
Y. Lee, “Learning and extracting finite state automata
with second order recurrent neural networks,” Neural
Comput., vol. 4, pp. 393–405, 1992.

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN
ELECTRONICS AND COMMUNICATION

ISSN: 0975 – 6779| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE - 02| Page 946

[2] G. Goodwin and K. Sin, Adaptive Filtering
Prediction and Control.Englewood Cliffs, NJ:
Prentice-Hall, 1984.
[3] S. Grossberg, “Pattern learning by functional-
differential neural networks with arbitrary path
weights,” in Delay and Functional Differential
Equations and Their Applications, Schmitt, Ed. New
York: Academic, 1972, pp. 121–160.
[4] S. Grossberg, Studies of Mind and Brain.
Amsterdam, The Netherlands:Reidel, 1982.
[5] Bose N.K., Liang P., Neural Network
Fundamentals With graphs, algorithms and
Application, Tata McGraw hill, New Delhi,
2002,ISBN0-07-463529-8.
[6] Razavi Behzad, Design of Analog CMOS
Integrated Circuits, Tata McGraw hill, New Delhi ,
2002, ISBN0-07-052903-5.
[7]Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient based learning applied to document
recognition,” Proc. IEEE, vol. 86, pp.2278–2324,
Nov. 1998.
[8] Roy Ludvig Sigvartsen, An Analog Neural
Network With On-Chip Learning Thesis Department
of informatics, University of Oslo, 1994
[9] Isik Aybayetal , Classification of Neural Network
Hardware, Neural Network World ,IDG Co., Vol6
No1, 1996, pp.11-29 ,
[10] Vincent F. Koosh Analog Computation and
Learning in VLSI PhD thesis California institute of
technology, Pasadena, California.2001.
[11] E. Vittoz, et al.,” The design of high
performance analog circuits on digital CMOS chips,”
IEEE J. Solid State Circuit 20, 1985, pp.657-665
[12] S. Orcioni G. Biagetti, M. Conti, “A mixed
signal fuzzy controller using current model circuits, “
Analog Integrated Circuits Process. 38, 2004 ,
pp.215-231.
[13] F. Djeffal et al., “Design and Simulation of
Nanoelectronic DG MOSFET Current Source using
Artificial Neural Networks,” Materials Science and
Engineering C, vol. 27, 2007, pp. 1111-1116
[14] Matlab Users Manual. Cambridge, MA:
Mathworks, 1998.
[15] C. Mead, Analog VLSI and Neural Systems.
Reading, MA: Addison-Wesley, 1989.
[16] J. Mendel and K. Fu, Adaptive Learning and
Pattern Recognition Systems. New York: Academic,
1970.
[17] “Neurosolutions,” in Neurosolutions Manual.
Ganesville, FL:NeuroDimensions Inc., 1995.
[18] A. Oppenheim and R. Schafer, Discrete-Time
Signal Processing.Englewood Cliffs, NJ: Prentice-
Hall, 1989.
[19] P. Peretto, An Introduction to the Modeling of
Neural Networks. Cambridge, U.K.: Cambridge
Univ. Press, 1994.
[20] R.S. Sutton and A.G. Barto. Reinforcement
Learning: An Introduction. MIT Press, 1998.

