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ABSTRACT : This paper reviews the problem of translatingnsils into symbols preserving maximally [the
information contained in the signal time structuta. this context, we motivate the use of nonco
dynamics for the signal to symbol translator. Feedbrd neural network structures have extensivedg
considered in the literature. In a significant viola of research and development studies hyperbatigen
type of a neuronal nonlinearity has been utiliz&tdis paper dwells on the widely used neuronal atitw
functions.The viewpoint here is to consider thedéidlayer(s) as transforming blocks composed ofimear
basis functions, which may assume different foith& paper considers 8 different activation funetiavhic
are differentiable and utilizes for parameter tupipurposes. The studies carried out have a guidijnaglity
based on empirical results on several training dsgés. With the advent of new technologies andrexbraen
in medical science we are trying to process thermftion artificially as our biological system perfns insid
our body. Atrtificial intelligence through a biolagil word is realized based on mathematical equatian
artificial neurons. Our main focus is on the imptatation of Neural Network Architecture (NNA) wih
chip learning in analog VLSI for (GSP) generic sijprocessing applications. In the proposed papealag
components like Gilbert Cell Multiplier (GCM), Neur activation Function (NAF) are used to implement
artificial NNA. The analog components used are aigep of multipliers and adders’ along with the tpn
sigmoid function circuit using MOS transistor inbglureshold region. This neural architecture is trad usin
Back propagation (BP) algorithm in analog domairthmiew techniques of weight storage. Layout deai
verification of the proposed design is carried ausing Tanner EDA 14.1 tool and synopsys Tspice| The
technology used in designing the layouts is MO3PSO-bu SCN3M, Tight Metal. We present result
simulations and measurements obtained from a fateécanalog very large scale integration (VLSI)gchi

Keywords :Neural Network Architecture, Back Propaian Algorithm, Analog VLSI implementation, digital
simulation models, neural assemblies

[.Introduction possible solution is to utlize a chaotic attractor
1.1 Artificial Intelligence created by a dynamical system with singularitieatof
Although many other researchers have investigatedeast second order (third-order ODE).A chaotic
dynamical principles to design and implement attractor is still a stable representation, migtistein
information processing systems (mainly in the a high-dimensional space (much higher than the
biophysics[1,2]land  computational  neurosciencedimensionality of our three-dimensional
communities [3]), this line of research is stilhighe  world),Intelligence is the computational part ofth
compared with the statistical approach. We areability to achieve goals in the world. Actually
slowly realizing that the limited repertoire of intelligence is a biological word and is acquireointf
dynamical behavior (fixed points) implemented by past experiences. The science which defines
these DCAMs constrain their use as informationintelligence mathematically is known as Artificial
processing devices for signals that carry inforomati Intelligence  (Al).  Artificial Intelligence s

in their time structure. For instance, the pointimplemented by using artificial neurons and these
attractor has no dynamical memory (i.e., the systenartificial neurons comprised of several analog
forgets all previous inputs when it reaches thedix components. Fig 1 expressed mathematically as
point) while the dynamic memory of the limit cyéte

constrained to the period; only chaotic systems

display long-term dynamic memory due to the

sensitivity to initial conditions. This sensitivity

carries the problem of susceptibility to noise, but
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Fig2: Layered structure of Neural Network

As it is clear from the above figure that weightslw
Bias to wl6 are used to connect the inputs v1 and ¥Bgo
neuron in the hidden layer[5]. Then weights w21 to

_Fl_ir?l: Neural(lj\letwork_ tep in the impl af w23 transferred the output of hidden layer to the
€ proposed paper s a step in the impiementation output layer. The final output is a21.

neural _network _ architecture[4] using_ back ILACTIVATION FEUNCTION:
propagation algorithm for data compression. The
neuron selected is comprises of multiplier and adde

along_ with the _tan-5|gm0|d f_unctlon. The raining o set of inputs. A standard computer chip circaib
algorithm used is performed in analog domain thusbe seen as a digital network of activation funcion

the whole neural architecture is a analog structure that can be "ON" (1) or "OFF" (0), depending on

a—f(P1W1+P2W2+P3W3+B|as) . input. This is similar to the behavior of the linea
where @ is the output of the neuron =:P"is input  perceptron in neural networks. However, it is the
d nonlinear activation function that allows such
networks to compute nontrivial problems using only
A small number of nodes.

3.1.Network Architectures

Two or more of the neurons shown earlier can be
combined in a layer, and a particular network could
contain one or more such layers. First consider a
single layer of neurons.

aOne Layer of Neurons A one-layer network with R

designed neuron is suitable for both analog an t el ¢ ds ol h )
digital applications. The proposed neural architeet |ﬁngp3u elements an neurons follows as shown in

is capable of performing operations like sine wave Inputs
learning, amplification and frequency multiplicatio
and can also be used for analog signal processin
activities.

[I. MULTIPLE LAYERS OF NEURONS &
In machine learning and computational neuroscience
an artificial neural network, often just named anaé
network, is a mathematical model inspired by s
biological neural networks. A neural network cotsis :
of an interconnected group of artificial neuronsda ,, 4
it processes information using a connectionist
approach to computation. In most cases a neurg
network is an adaptive system changing its strectur
during a learning phase. Neural networks are used f
modeling complex relationships between inputs and a=HWp+b)

outputs or to find patterns in data. When a set offig3:layer of Neurons . _
single layer neurons are connected with each dther In this network, each element of the input vectas p

forms a multiple layer neurons, as shown in tha.fig connected to each neuron input through the weight
matrix W. The ith neuron has a summer that gathers

its weighted inputs and bias to form its own scalar

1

In computational networks, the activation functiin
a node defines the output of that node given antinp

and =" is neuron weight . The bias is optional an
user defined. A neuron in a network is itself afgien

processing unit which has an associated weight fo
each input to strengthening it and produces anubutp

The working of neuron is to add together all the
inputs and calculating an output to be passed ba. T
neural architecture is trained using back propagati
algorithm and also it is a feed forward networkeTh

Layer of Neurons

Where

2 R = number of
elements in
input vector

5 = number of
neurons in layer
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output n(i). The various n(i) taken together form a network. To illustrate, the one-layer multiple itpu
S-element net input vector n. Finally, the neuronnetwork shown earlier is redrawn in abbreviatedrfor
layer outputs [6]form a column vector a. The here.

expression for a is shown at the bottom of therégu Input Layer‘]

Note that it is common for the number of inputsato

layer to be different from the number of neurons.{i m f 3 Where..
R is not necessarily equal to S). A layer is not P

al

constrained to have the number of its inputs etpal Wu R= nurnberof
the number of its neurons. You can create a single [l &x! 1 §hl slaments in
(composite) layer of neurons having different tfans Slxp inputvectgr
functions simply by putting two of the networks LYl
shown earlier in parallel. Both networks would have 1 b _
. 5= number of

the same inputs, and each network would create som neurons in Laver 1
of the outputs.The input vector elements enter thg & | \ st g y f
network through the weight matrix W.

iy Mha . W4 p al=f1[IWL1p+h1)

Fig5: Multiple Layers of Neurons layer weight

As you can see, the weight matrix connected to the
input vector p is labeled as an input weight matrix
gy Mg .- WgR (IW1,1) having a source 1 (second index) and a
' ) ' destination 1 (first index). Elements of layer (g¢ls

as its bias, net input, and output have a supetstri

to say that they are associated with the first
layer.Multiple Layers of Neurons uses layer weight
(LW) matrices as well as input weight (IW) matrices
IV.MULTIPLE LAYERS OF NEURONS

A network can have several layers. Each layer has a
weight matrix W, a bias vector b, and an output

iy taos ... dag

Note that the row indices on the elements of matrix
W indicate the destination neuron of the weight] an
the column indices indicate which source is theuinp
for that weight. Thus, the indices in w1,2 say it
strength of the signdtom the second input element
to the first (and only) neuron is wl,2.The S neuren R
input one-layer network also can be drawn in
abbreviated notation.

Laver of Naurons vector a. To distinguish between the weight magice
Input A output vectors,[8] etc., for each of these layarthie
'Y 3 Whera figures, the number of the layer is appended as a
superscript to the variable of interest. You camthe
p W d R = numbar of use of this layer notation in the three-layer netwo
Rxl i Srl el:;rnents in shown next, and in the equations at the bottonhef t
SxR : fig6.
i 531 |ﬂpUtVEGtUr Inguls Layer 1 Layer2 Layer 3
| 'S¢
19 b 5= number of Wl
R sx1 § neurons in layer 1 n </
\ J
1
a=f (Wp+D)
Fig4: weight matrix oY

Here p is an R-length input vector, W is an S x R j
matrix, a and b are S-length vectors. As defined
previously, the neuron layer includes the weight
matrix as in fig4, the multiplication operation$iet

bias vector b, the summer, and the transfer functio AN /A /N /
blocks. o =F{IWp+b) 2 =F{LWa'+h) £ = FILW 5 +b)
Inputs and Layers To describe networks having £ =PI LW W pt b)) )

multiple layers, the notation must be extended.Fig6: three-layer network

Specifically, it needs to make a distinction betwee The network shown above has R1 inputs, S1 neurons
weight matrices that are connected to inputs andn the first layer, S2 neurons in the second lagég,
weight matrices that are connected between lajers. It is common for different layers to have different
also needs to identify the source and destination f numbers of neurons. A constant input 1 is fed ® th
the weight matrices. We will call weight matrices bias for each neuron.Note that the outputs of each
connected to inputs input weights; we will call intermediate layer are the inputs to the following
weight matrices connected to layer outputs layerlayer. Thus layer 2 can be analyzed as a one-layer
weights. Further, superscripts are used to idethiéy network with S1 inputs, S2 neurons, and an S2 x S1
source (second index) and the destination (fickex  weight matrix W2. The input to layer 2 is al; the
for the various weights[7] and other elements & th output is a2. Now that all the vectors and matrizes
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layer 2 have been identified, it can be treatechas (represented in the user's data with NaN valuds) in
single-layer network on its own. This approach cana numerical form [10]for the network. fixunknowns
be taken with any layer of the network.The lay®&js [ preserves information about which values are known
of a multilayer network play different roles. A ety and which are unknown.Similarly, network outputs
that produces the network output is calledoaitput ~ can also have associated processing functions.udutp
layer. All other layers are calledidden layersThe  processing functions are used to transform user-
three-layer network shown fig7 earlier has one outp provided target vectors for network use. Then,
layer (layer 3) and two hidden layers (layer 1 andnetwork outputs are reverse-processed using the sam
layer 2). Some authors refer to the inputs as atou functions to produce output data with the same
layer. This toolbox does not use that designatib@.T characteristics as the original user-provided tatge
architecture of a multilayer network with a single Both mapminmax and removeconstantrows are often
input vector can be specified with the notation R1 ~ associated with network outputs. However,
S2 ... SM, where the number of elements of the fixunknowns is not. Unknown values in targets
input vector and the number of neurons in eachrlaye(represented by NaN values) do not need to beedlter
are specified.The same three-layer network can alséor network use.
be drawn using abbreviated notation. 5.2 Analog Components for Neural Architecture The
It Layer Layer? e inputs to the neuron v1 and v2 as shown in figure 2
are multiplied by the weight matrix, the resultant
output is summed up and is passed through an NAF.
The output of the activation function is then passe
the next layer for further processing. Blocks to be
used are Multiplier block, Adders, NAF block with
derivative.
In biologically inspired neural networks, the
activation function is usually an abstraction
representing the rate of action potential firingthe
cell. In its simplest form, this function is binarthat
is, either the neuron is firing or not. The funatio

Wund)  wF W) looks like ‘:'b(vt) - U(Ut'), where Uls the
Heaviside step function. In this case a large numbe
of neurons must be used in computation beyond

E;:ﬂ[L“u;p N Wbl +y linear separation of categories.
Fig7: multilayer network with a single input vector A line of positive slope may also be used to réflec

Multiple-layer networks are quite powerful. For Fhe increase in firing rate that occurs as inputent
instance, a network of two layers, where the firstincreases. The function would then be of the form

gl eef

layer is sigmoid and the second layer is lineanma @ V;) = MU where Mis the slope. This

trained to approximate any function (with a finite activation function is linear, and therefore hase th
of two-layer network is used extensively in petworks constructed using this model have unstable
Multilayer Networks and Backpropagation Training. convergence because neuron inputs along favored
Here it is assumed that the output of the thircetay paths tend to increase without bound, as this fonct
a3, is the network output of interest, and thipatuts s not normalizable.

labeled as y. This notation is used to specify thea|| problems mentioned above can be handled by

output of multilayer networks. using a normalizable sigmoid activation function.
VINPUT ~~ AND  OUTPUT  PROCESSING  One realistic model stays at zero until input cutriie
FUNCTIONS received, at which point the firing frequency

Network inputs might have associated processingncreases quickly at first, but gradually approacae

functions. Processing functions transform user inpu asymptote at 100% firing rate. Mathematically, this
data to a form that is easier or more efficient dor

network. looks like ?(vi) = U (v;) tanh(v; ) where
For instance, mapminmax transforms input data sghe hyperbolic tangent function can also be any
that all values fall into the interval [ 1, 5.1.Thican  Sigmoid. This behavior is realistically reflectedthe
speed up learning for many networks. N€uron, as neurons cannot physically fire fastan t
removeconstantrows removes the rows of the inpugertain rate. This model runs into problems, howeve
vector that correspond to input elements that asway in computational networks as it is not differenteata
have the same value, because these input elemeni@guirement in order to calculate backpropagation.
are not providing any useful information to the The final model, then, that is used in multilayer
network. The third common processing function is Perceptrons is a sigmoidal activation function e t

fixunknowns, which recodes unknown data form of a hyperbolic tangent. Two forms of this
function are commonly used:
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‘ﬁ( ) — ta,nh( )Whose range is normalized
from -1 to 1, and

- —1
!;"J(Ut') — (1 + EXD( _Ut')) is  vertically
translated to normalize from 0 to 1. The latter slod
is often considered more biologically realistict litu
runs into theoretical and experimental difficulties
with certain types of computational problems.
VI.ALTERNATIVE STRUCTURES

A special class of activation functions known as
radial basis functions (RBFs) are used in RBF
networks, which are extremely efficient as universa

function approximators. These activation functions *

can take many forms, but they are usually found as
one of three functions:

d(u) = exp| -

Gaussian.

Ji-cf
L

o10) = -+

Multiquadratics:
h-1/2
Inverse muIthuadrancqb(Ut) - ("Ut C," Ta ) /
whereliis the vector representing the function center
and fland (Fare parameters affecting the spread of
the radius.Support vector machines (SVMs)[12] can®
effectively utilize a class of activation functiotisat

includes both sigmoids and RBFs. In this case, the
input is transformed to reflect a decision boundary.

hyperplane based on a few training inputs called
support vectorst.. The activation function for the

hidden layer of these machines is referred to as th

= ‘I’(Ut) The

inner product kernel,—IHL (ué! 1:}

support vectors are represented as the centers |

RBFs with the kernel equal to the activation fuouti
but they take a unique form in the perceptron as

¢(v;) = tanh | §; + o Z Ui ;T
j I

where ﬁﬂand ﬁlmust satisfy certain conditions for
convergence. These machines can also accej

arbitrary-order polynomial activation functions whe
p

1"‘2”@3 T;
]

6.1.Activation funcuon having types:

Identity function.

Binary step function.

Bipolar step function.

Sigmoidal function.

Binary sigmoidal function.

Bipolar sigmoidal function.

Ramp function.

6 2. Multiplier Block

The Gilbert cell is used as the multiplier blockheT
schematic of the Gilbert cell is as shown in tly8fi

o(v;) =

Nogkrwpdr

e
Wl
L=¢

Mt
W= 2.0
= 96w,

Fig8: Gilbert cell schematic with current mirror
circuit

As in this paper we are mainly focusing on layout
part so the layout of the Gilbert cell multiplies i
shown in fig9 and 10. Layout design and verificatio
[13]of the proposed design is carried out using
Tanner EDA 14.1 tool and synopsys Tspice. The
technology used in designing the layouts is
MOSIS/HP 0.5u SCN3M, Tight Metal.

Fig9: Layout of Gilbert cell multiplier
Schematic of NAF

Adders:The output of the Gilbert cell is in therfoof
current (trans conductance).The node of the Gilbert
cell connecting the respective outputs act as adder
itself.

VII. Neuron Activation Function (NAF)

The designed activation function is tan sigmoide Th
proposed design is actually a differential amplifie
modified for differential output. Same circuit is
capable of producing output the activation function
and the differentiation of the activation function.
Here two designs are considered for NAF

1. Differential amplifier as NAF

2. Modified differential amplifier as NAF with
differentiation output.

Fig10:
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7.1. Differential Amplifier Design As A Neuron v"-n—"""—i r—"—i
Activation Function (Tan) This block is named as ta ) %
in the final schematics for Neural Architecture

sub-threshold region acts as a neuron aCt'Vat'Ori.t
function.

7.2 Modified Differential Amplifier Design for
Differentiation Output (fun) Schematic of the desig
shown in the figl0 is used for the tan SigMOId w: MK
function generator with modification for the B
differential output. The NAF function[14] can be
derived from the same differential pair configunati
The structure has to be modified for the differainti
output. -
7.3 Layout issues:As we already discussed that we
are using tan sigmoid function to realize NAF the
reason behind using tan sigmoid function is thedraf
carried out a mathematical analysis we found tat t
sigmoid function is best suitable for compressiad a
achieving a tangential output. The layout of NAF is
shown in fig11.

! \ olps el
Figl2 aJ&b]Basic Back-Propagation Neural
Network for image compression

Fig 13 Schematic of Compression Block Fig 14:
Fig10:Layoout of NAF Figl1:implementation of the Layout of compression block
NA using Analog Blocks

VIII.REALIZATION OF NEURAL The Layout of circuit for image compression is
ARCHITECTURE USING ANALOG  shown in figure 9.
COMPONENTS The improved back propagation algorithm which is

The components designed in the previous section ara@sed in this Figl3]&14] can be summarized
used to implement the neural architecture. The tarnitialize all the weights and biases to a smathber
block is the differential amplifier block designéa  (approx between -1 and +l. Jand input vector, x and
section 2.1.3.1. This block is used as the neurordesired output vector, d.Compute the actual outputs
activation function as well as for the multipliGati  of the network defined.
purpose. The mult is the Gilbert cell multiplier 8.1 Neuron Application -Image Compression and
designed in section 7.1 The fun is the NeuronDecompression The above proposed NA is used for
activation function circuit with differential outpu image compression. Image consisting of pixel
designed in section 7.2.Figl2 shows exactly how thentensities are fed to the network shown in Fig8re
neural architecture of fig2 is implemented usingfor compression and then this compressed image act
analog components. The input layer is the inptihéo  as input for the decompression block. The layout
2:3:1 neuron. The hidden layer is connected to thecircuit of decompression block is as shown in figl5
input layer by weights in the first layer namednds. The 2:3:1 neuron proposed has an inherent capabilit
The output layer is connected to input layer thtoug of compressing the inputs, [11,12] as there are two
weights w2j. The op is the output of 2:3:1 neuron.inputs and one output. The compression achieved is
The schematic of circuit for image compression is97.30%. Since the inputs are fed in the analog form
shown in figure 8. to the network there is no need for analog to digit
converters.Figlé shows the schematic of
decompression block
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Figl5 : Schematic of Decompression Block Decompression block
Fig16 : Layout of Decompression Block IX.BACK PROPAGATION ALGORITHM

Backpropagation is the most common method of
This is one of the major advantages of this work. Atraining of artificial neural network so as to nmnze
1:3:2 neural networks is designed for the the objective function. It is the generalizationdeita
decompression purpose. The neural network has 8ule and mainly used for feed forward networks. The
neurons in the hidden layer and two in the outputbackpropagation algorithm is understand by dividing

layer. it into two phases. First phase is propagation and
second is weight update.
Figl7 shows the compression and decompressiod) Read the image
scheme. The training algorithm used in this network?2) Divide it into the blocks of pixels
is Back Propagation algorithm. The error propagates3) Scan each block
from decompression block to the compression bock4) Appling each scanned vector to input neuron
Once the network is trained for different inpute th 5) Hidden layer
two architectures are separated and can be used &% Train the network
compression block and decompression block7) Re adjust the weights
independently. 8) Read the next block
Vool g ] m 9) Repeat all the steps until the desired error
i e—] - = 3 54— —+Dvlon value
(412 ] v LRLE [ pmt D200t .
wtDe—| P oo 9.1. Propagation
ratd De—ri = wiDe— . .. LE S,
W] -, a) Forward propagation of training patt_Smput
w2 ye—| = .
o WD through the neural network in order to
b ot generate the propagati’ Soutput activations.
pEe o b) Backward propagation of the of the propagation
o pcem “Soutput activations through the neural
o b o8 network using the training patte Starget in order
L] | to generate the deltas of all output and
hidden in neurons.

.2. Weight Update

) For each weight synapse it multiply its outpeita
and input activation to get the

radient of the weight.

) Bring the weight in opposite direction of the

Figl7: Image Compression and Decompression usin
proposed neural architecture

The layout implementation of block diagram of
compression and decompression block is shown i

figl8shows the combined schematic of compressio . . X . .
[193 14] and decompression block.Fig:18 Copmbinedgrad'em by subtracting a ratio of it from the whig
' . This ratio influences the speed and quality of

Schematic of Compression and Decompressio . iy . .
Block.The layout implementation of block diagram r]earn|ng[15_,16] and it 'S.Ca”?d I_earnmg rate. ‘Eign
r?f the gradient of a weight indicates where thererr

of compression and decompression block is shown in_ . . . :

fing&1p4 shows the cc?mbined schematic of !> INcreasing, Fhat IS wh_y the weight must be updat

compression and decompression block: in the opposite direction. These phases goes on
' repeating until the performance is of the netwak i

satisfactory.
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The algorithm is stopped when the value of thererro
function has become sufficiently small.and use
following steps

Step 1: Initialize all the weights and biases tnall
number (approx between -1 and +I.)

Step 2: Read the input vector, x and desired output
vector, d.

step 3: Compute the actual outputs of the network
defined as

y; = f[ E WX +qjj

where the function f(*) is the nonlinear activation
function.
Step 4: Adjust the weights by

Fig19: Notation for three-layered network

There are (n + 1) x k weights between input sites a W(t+1):W(t)+n5y+a(W(t)'W(t"l))‘

hidden units and (k +1)xm between hidden and ! AL AR o
output units. Let W1 denote the (n+1)xk matrix with Compute derivatives using method of finite
component y at the i-th row and the j-th column. differences each weight in turn and approximate
Similarly let W2 denote the (k + 1) x m matrix with derivatives by

components W’.We use an overlined notation to gﬂ'.'f‘| E'{n'ﬁﬁl-f{n' }

emphasize that the last row of both matrices—= - +(X¢) where £ <<
corresponds to the biases of the computing unfis. T &I' 3

matrix of weights without this last row will be régdl  Accuracy improved by make e smaller until round-
in the backpropagation step. The n-dimensionaltinpuoff problems Arise

vectorO= (o1, . . ., on) is extended, transforming it X.RESULTS AND DISCUSSIONS
to "o = (01, . .., on, 1). The excitation netjtioé j-th 10.1.SIMULATION RESULT FOR GILBERT
hidden unit is given by: CELL MULTIPLIER
The designed Gilbert cell is simulated using TSRICE
i (1) = The simulation result shown in the figure 16 isttoe
ret; = E b TR multiplication of two voltages v1 and v2. v1 voleag
i=1 is 4 Vpp and 100 MHz frequency. v2 is 2 Vpp 10
The activation function is a sigmoid and the outputMHz frequency. ,
0j(1) of this unit is thus simulated results are(using matlab)
n+1 Oryelmag lowma mp
(1 _ (1) 5. i
o = s (S ulpa Ll E
=1 =
After choosing the weights of the network randomly, - N
the backpropagation algorithm is used to compuge th | T = — e
necessary corrections. i EE!J‘K ;;m' e | -
F of Goeegs o
Bt Matted  [Tine S e s
|,-',: Hne  |Image R |FSNR |TIME
ler e om |ma i8] i)
| 1 Cameramen |4:1  |26.255% |30
e [0 3 |48

Fig21.The output wave is the multiplication of vida
v2 voltage done by the circuit. The output ampkud
is 5.6 Vpp. The output can be seen matching wigh th
theoretical output.

Fig20.The algorithm can be decomposed in the
following four steps:

(i) Feed-forward computation

(ii) Backpropagation to the output layer

(iii) Backpropagation to the hidden layer

(iv) Weight updates
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the application of image compression and
decompression.
Fig:27a]&b]Micro wind ?imulated results

wt b e e s i =B

FrafBRaZEE

Fig22: Multiplication operation of Gilbert cell
multiplier
10.1. Simulation Result for Neuron activation
function

y The simulation result for image compression and
/ decompression are shown in the fig27. The input 1
7 was a sine wave with 16 Vpp voltage 10 MHz
P / frequency and input 2 was a sine wave with 9 Vpp
’ ; voltage and 100 MHz frequency. The compressed
output was a DC signal of 4 Vpp.The decompressed
output for input 1 was a 4.5 Vpp sine wave and for
input 2 was a 4.5 Vpp sine wave[20]. The

: compression we achieved is 97.22 % and the average
Fig23: Circuit o/p for Neuron Activation function decompression achieved is 60.94%.
block (tan) XII.CONCLUSION _ . N

Neural network with their remarkable ability to

derive meaning from complicated or imprecise data
an be used to extract patterns and to detectgrend
hat are too complex to be noticed by either humans
or other computer techniques. with the above result
firstly we say that the selection of neural network

Fig24: Simulation of Image compression

10.2 Image Compression using Neural Architecture
Image compression is separately performed usin
neural architecture. The simulation result[17,18,19
for image compression are shown in the figure 18

The input v1 was a sine wave with 2 Vpp voltage at . . ) .
b PP g algorithm for the fast compression is done using

10 MHz frequency and input v2 was a sine wave WIthMATLAB simulation tool, we conclude that the

4V taf 100 MHz. Th tput of | : . .
comgfesiioﬁ isrgqg(e:n;énal of 70 rrZ1V € ouput o improved back propagation algorithm is used For the

10.3 Image Decompression using Neural Fes(; case stgnbdagdzc;lmeramen |magedthhe etficie
Architecture The separate decompression of a 3 Vp > decreased by U. percentage and the converges

sine wave at 100 MHz gives the decompressed outp m‘;. increaseddby 2.0'63 perce_ntage andd iFs gnalo
as a signal of 7 Vpp. The simulation result of imag 2'C itecture and schismatic is implemented in micro

decompression is shown in figure 19. wind . t0.0| Due. to its ad.aptive learning, self-
e E wr " organization, real time operations and fault tales
B SEEEsEeE via redundant information coding properties it &&n
| Eebbreebhia b used in Modelling and Diagnosing the
R o Cardiovascular System and in Electronic noses which
= has several potential applications in telemedicine.
1 578 O Another application developed was “Instant
T T o o o Physician” which represents the “best” diagnosid an
; BENLYER treatment. This work can be further extended to

R implement neuro fuzzy system with high speed low
M power, CMOS circuit (Layout extraction) in current
: AT mode as well as for nano scale circuit simulation
|t using Double Gate MOSFET (DG MOSFET)
‘ T s modeling.
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