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ABSTRACT : This paper reviews the problem of translating signals into symbols preserving maximally the 
information contained in the signal time structure. In this context, we motivate the use of nonconvergent 
dynamics for the signal to symbol translator. Feedforward neural network structures have extensively been 
considered in the literature. In a significant volume of research and development studies hyperbolic tangent 
type of a neuronal nonlinearity has been utilized. This paper dwells on the widely used neuronal activation 
functions.The viewpoint here is to consider the hidden layer(s) as transforming blocks composed of nonlinear 
basis functions, which may assume different forms. This paper considers 8 different activation functions which 
are differentiable and utilizes for parameter tuning purposes. The studies carried out have a guiding quality 
based on empirical results on several training data sets. With the advent of new technologies and advancement 
in medical science we are trying to process the information artificially as our biological system performs inside 
our body. Artificial intelligence through a biological word is realized based on mathematical equations and 
artificial neurons. Our main focus is on the implementation of Neural Network Architecture (NNA) with on a 
chip learning in analog VLSI for (GSP) generic signal processing applications. In the proposed paper analog 
components like Gilbert Cell Multiplier (GCM), Neuron activation Function (NAF) are used to implement 
artificial NNA. The analog components used are comprises of multipliers and adders’ along with the tan-
sigmoid function circuit using MOS transistor in subthreshold region. This neural architecture is trained using 
Back propagation (BP) algorithm in analog domain with new techniques of weight storage. Layout design and 
verification of the proposed design is carried out using Tanner EDA 14.1 tool and synopsys Tspice. The 
technology used in designing the layouts is MOSIS/HP 0.5u SCN3M, Tight Metal. We present results of 
simulations and measurements obtained from a fabricated analog very large scale integration (VLSI) chip. 
 
Keywords :Neural Network Architecture, Back Propagation Algorithm, Analog VLSI implementation, digital 
simulation models, neural assemblies 
 
 
I.Introduction 
1.1 Artificial Intelligence 
Although many other researchers have investigated 
dynamical principles to design and implement 
information processing systems (mainly in the 
biophysics[1,2]and computational neuroscience 
communities [3]), this line of research is still a niche 
compared with the statistical approach. We are 
slowly realizing that the limited repertoire of 
dynamical behavior (fixed points) implemented by 
these DCAMs constrain their use as information 
processing devices for signals that carry information 
in their time structure. For instance, the point 
attractor has no dynamical memory (i.e., the system 
forgets all previous inputs when it reaches the fixed 
point) while the dynamic memory of the limit cycle is 
constrained to the period; only chaotic systems 
display long-term dynamic memory due to the 
sensitivity to initial conditions. This sensitivity 
carries the problem of susceptibility to noise, but a 

possible solution is to utilize a chaotic attractor 
created by a dynamical system with singularities of at 
least second order (third-order ODE).A chaotic 
attractor is still a stable representation, might exist in 
a high-dimensional space (much higher than the 
dimensionality of our three-dimensional 
world),Intelligence is the computational part of the 
ability to achieve goals in the world. Actually 
intelligence is a biological word and is acquired from 
past experiences. The science which defines 
intelligence mathematically is known as Artificial 
Intelligence (AI). Artificial Intelligence is 
implemented by using artificial neurons and these 
artificial neurons comprised of several analog 
components. Fig 1  expressed mathematically as 



JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN 
ELECTRONICS AND COMMUNICATION  

ISSN: 0975 – 6779| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE - 02| Page 938 

 
Fig1: Neural Network 
The proposed paper is a step in the implementation of 
neural network architecture[4] using back 
propagation algorithm for data compression. The 
neuron selected is comprises of multiplier and adder 
along with the tan-sigmoid function. The training 
algorithm used is performed in analog domain thus 
the whole neural architecture is a analog structure. 
a = f (P1W1+P2W2+P3W3+Bias) 

where is the output of the neuron & is input 

and  is neuron weight . The bias is optional and 
user defined. A neuron in a network is itself a simple 
processing unit which has an associated weight for 
each input to strengthening it and produces an output. 
The working of neuron is to add together all the 
inputs and calculating an output to be passed on. The 
neural architecture is trained using back propagation 
algorithm and also it is a feed forward network. The 
designed neuron is suitable for both analog and 
digital applications. The proposed neural architecture 
is capable of performing operations like sine wave 
learning, amplification and frequency multiplication 
and can also be used for analog signal processing 
activities.  
II. MULTIPLE LAYERS OF NEURONS 
In machine learning and computational neuroscience, 
an artificial neural network, often just named a neural 
network, is a mathematical model inspired by 
biological neural networks. A neural network consists 
of an interconnected group of artificial neurons, and 
it processes information using a connectionist 
approach to computation. In most cases a neural 
network is an adaptive system changing its structure 
during a learning phase. Neural networks are used for 
modeling complex relationships between inputs and 
outputs or to find patterns in data. When a set of 
single layer neurons are connected with each other it 
forms a multiple layer neurons, as shown in the fig2. 

 
Fig2: Layered structure of Neural Network 
As it is clear from the above figure that weights w11 
to w16 are used to connect the inputs v1 and v2 to the 
neuron in the hidden layer[5]. Then weights w21 to 
w23 transferred the output of hidden layer to the 
output layer. The final output is a21. 
III.ACTIVATION FUNCTION: 
In computational networks, the activation function of 
a node defines the output of that node given an input 
or set of inputs. A standard computer chip circuit can 
be seen as a digital network of activation functions 
that can be "ON" (1) or "OFF" (0), depending on 
input. This is similar to the behavior of the linear 
perceptron in neural networks. However, it is the 
nonlinear activation function that allows such 
networks to compute nontrivial problems using only 
a small number of nodes. 
3.1.Network Architectures 
Two or more of the neurons shown earlier can be 
combined in a layer, and a particular network could 
contain one or more such layers. First consider a 
single layer of neurons. 
One Layer of Neurons A one-layer network with R 
input elements and S neurons follows as shown in 
fig3. 

 
Fig3:layer of Neurons 
In this network, each element of the input vector p is 
connected to each neuron input through the weight 
matrix W. The ith neuron has a summer that gathers 
its weighted inputs and bias to form its own scalar 
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output n(i). The various n(i) taken together form an 
S-element net input vector n. Finally, the neuron 
layer outputs [6]form a column vector a. The 
expression for a is shown at the bottom of the figure. 
Note that it is common for the number of inputs to a 
layer to be different from the number of neurons (i.e., 
R is not necessarily equal to S). A layer is not 
constrained to have the number of its inputs equal to 
the number of its neurons. You can create a single 
(composite) layer of neurons having different transfer 
functions simply by putting two of the networks 
shown earlier in parallel. Both networks would have 
the same inputs, and each network would create some 
of the outputs.The input vector elements enter the 
network through the weight matrix W. 

 
Note that the row indices on the elements of matrix 
W indicate the destination neuron of the weight, and 
the column indices indicate which source is the input 
for that weight. Thus, the indices in w1,2 say that the 
strength of the signal from the second input element 
to the first (and only) neuron is w1,2.The S neuron R-
input one-layer network also can be drawn in 
abbreviated notation. 

 
Fig4: weight matrix 
Here p is an R-length input vector, W is an S × R 
matrix, a and b are S-length vectors. As defined 
previously, the neuron layer includes the weight 
matrix as in fig4, the multiplication operations, the 
bias vector b, the summer, and the transfer function 
blocks. 
Inputs and Layers To describe networks having 
multiple layers, the notation must be extended. 
Specifically, it needs to make a distinction between 
weight matrices that are connected to inputs and 
weight matrices that are connected between layers. It 
also needs to identify the source and destination for 
the weight matrices. We will call weight matrices 
connected to inputs input weights; we will call 
weight matrices connected to layer outputs layer 
weights. Further, superscripts are used to identify the 
source (second index) and the destination (first index) 
for the various weights[7] and other elements of the 

network. To illustrate, the one-layer multiple input 
network shown earlier is redrawn in abbreviated form 
here.  

 
Fig5: Multiple Layers of Neurons layer weight 
As you can see, the weight matrix connected to the 
input vector p is labeled as an input weight matrix 
(IW1,1) having a source 1 (second index) and a 
destination 1 (first index). Elements of layer 1, such 
as its bias, net input, and output have a superscript 1 
to say that they are associated with the first 
layer.Multiple Layers of Neurons uses layer weight 
(LW) matrices as well as input weight (IW) matrices. 
IV.MULTIPLE LAYERS OF NEURONS 
A network can have several layers. Each layer has a 
weight matrix W, a bias vector b, and an output 
vector a. To distinguish between the weight matrices, 
output vectors,[8] etc., for each of these layers in the 
figures, the number of the layer is appended as a 
superscript to the variable of interest. You can see the 
use of this layer notation in the three-layer network 
shown next, and in the equations at the bottom of the 
fig6.  

 
Fig6: three-layer network 
The network shown above has R1 inputs, S1 neurons 
in the first layer, S2 neurons in the second layer, etc. 
It is common for different layers to have different 
numbers of neurons. A constant input 1 is fed to the 
bias for each neuron.Note that the outputs of each 
intermediate layer are the inputs to the following 
layer. Thus layer 2 can be analyzed as a one-layer 
network with S1 inputs, S2 neurons, and an S2 × S1 
weight matrix W2. The input to layer 2 is a1; the 
output is a2. Now that all the vectors and matrices of 
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layer 2 have been identified, it can be treated as a 
single-layer network on its own. This approach can 
be taken with any layer of the network.The layers [9] 
of a multilayer network play different roles. A layer 
that produces the network output is called an output 
layer. All other layers are called hidden layers. The 
three-layer network shown fig7 earlier has one output 
layer (layer 3) and two hidden layers (layer 1 and 
layer 2). Some authors refer to the inputs as a fourth 
layer. This toolbox does not use that designation.The 
architecture of a multilayer network with a single 
input vector can be specified with the notation R � S1 
� S2 �...� SM, where the number of elements of the 
input vector and the number of neurons in each layer 
are specified.The same three-layer network can also 
be drawn using abbreviated notation. 

 
Fig7: multilayer network with a single input vector 
Multiple-layer networks are quite powerful. For 
instance, a network of two layers, where the first 
layer is sigmoid and the second layer is linear, can be 
trained to approximate any function (with a finite 
number of discontinuities) arbitrarily well. This kind 
of two-layer network is used extensively in 
Multilayer Networks and Backpropagation Training. 
Here it is assumed that the output of the third layer, 
a3, is the network output of interest, and this output is 
labeled as y. This notation is used to specify the 
output of multilayer networks. 
V.INPUT AND OUTPUT PROCESSING 
FUNCTIONS 
Network inputs might have associated processing 
functions. Processing functions transform user input 
data to a form that is easier or more efficient for a 
network. 
For instance, mapminmax transforms input data so 
that all values fall into the interval [�1, 5.1.This can 
speed up learning for many networks. 
removeconstantrows removes the rows of the input 
vector that correspond to input elements that always 
have the same value, because these input elements 
are not providing any useful information to the 
network. The third common processing function is 
fixunknowns, which recodes unknown data 

(represented in the user's data with NaN values) into 
a numerical form [10]for the network. fixunknowns 
preserves information about which values are known 
and which are unknown.Similarly, network outputs 
can also have associated processing functions. Output 
processing functions are used to transform user-
provided target vectors for network use. Then, 
network outputs are reverse-processed using the same 
functions to produce output data with the same 
characteristics as the original user-provided targets. 
Both mapminmax and removeconstantrows are often 
associated with network outputs. However, 
fixunknowns is not. Unknown values in targets 
(represented by NaN values) do not need to be altered 
for network use. 
5.2 Analog Components for Neural Architecture The 
inputs to the neuron v1 and v2 as shown in figure 2 
are multiplied by the weight matrix, the resultant 
output is summed up and is passed through an NAF. 
The output of the activation function is then passes to 
the next layer for further processing. Blocks to be 
used are Multiplier block, Adders, NAF block with 
derivative. 
In biologically inspired neural networks, the 
activation function is usually an abstraction 
representing the rate of action potential firing in the 
cell. In its simplest form, this function is binary—that 
is, either the neuron is firing or not. The function 

looks like , where is the 
Heaviside step function. In this case a large number 
of neurons must be used in computation beyond 
linear separation of categories. 
A line of positive slope may also be used to reflect 
the increase in firing rate that occurs as input current 
increases. The function would then be of the form 

, where is the slope. This 
activation function is linear, and therefore has the 
same problems as the binary function.[11]In addition, 
networks constructed using this model have unstable 
convergence because neuron inputs along favored 
paths tend to increase without bound, as this function 
is not normalizable. 
All problems mentioned above can be handled by 
using a normalizable sigmoid activation function. 
One realistic model stays at zero until input current is 
received, at which point the firing frequency 
increases quickly at first, but gradually approaches an 
asymptote at 100% firing rate. Mathematically, this 

looks like , where 
the hyperbolic tangent function can also be any 
sigmoid. This behavior is realistically reflected in the 
neuron, as neurons cannot physically fire faster than a 
certain rate. This model runs into problems, however, 
in computational networks as it is not differentiable, a 
requirement in order to calculate backpropagation. 
The final model, then, that is used in multilayer 
perceptrons is a sigmoidal activation function in the 
form of a hyperbolic tangent. Two forms of this 
function are commonly used: 
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whose range is normalized 
from -1 to 1, and 

is vertically 
translated to normalize from 0 to 1. The latter model 
is often considered more biologically realistic, but it 
runs into theoretical and experimental difficulties 
with certain types of computational problems. 
VI.ALTERNATIVE STRUCTURES  
A special class of activation functions known as 
radial basis functions (RBFs) are used in RBF 
networks, which are extremely efficient as universal 
function approximators. These activation functions 
can take many forms, but they are usually found as 
one of three functions: 

Gaussian:  

Multiquadratics:  

Inverse multiquadratics:  
where is the vector representing the function center 
and and are parameters affecting the spread of 
the radius.Support vector machines (SVMs)[12] can 
effectively utilize a class of activation functions that 
includes both sigmoids and RBFs. In this case, the 
input is transformed to reflect a decision boundary 
hyperplane based on a few training inputs called 
support vectors . The activation function for the 
hidden layer of these machines is referred to as the 

inner product kernel, . The 
support vectors are represented as the centers in 
RBFs with the kernel equal to the activation function, 
but they take a unique form in the perceptron as 

, 

where and must satisfy certain conditions for 
convergence. These machines can also accept 
arbitrary-order polynomial activation functions where 

.[1] 
6.1.Activation function having types: 
1. Identity function. 
2. Binary step function. 
3. Bipolar step function. 
4. Sigmoidal function.  
5. Binary sigmoidal function. 
6. Bipolar sigmoidal function. 
7. Ramp function. 
6.2. Multiplier Block 
The Gilbert cell is used as the multiplier block. The 
schematic of the Gilbert cell is as shown in the fig8. 

 
Fig8: Gilbert cell schematic with current mirror 
circuit 
As in this paper we are mainly focusing on layout 
part so the layout of the Gilbert cell multiplier is 
shown in fig9 and 10. Layout design and verification 
[13]of the proposed design is carried out using 
Tanner EDA 14.1 tool and synopsys Tspice. The 
technology used in designing the layouts is 
MOSIS/HP 0.5u SCN3M, Tight Metal. 

 
Fig9: Layout of Gilbert cell multiplier  Fig10: 
Schematic of NAF 
Adders:The output of the Gilbert cell is in the form of 
current (trans conductance).The node of the Gilbert 
cell connecting the respective outputs act as adder 
itself. 
VII. Neuron Activation Function (NAF) 
The designed activation function is tan sigmoid. The 
proposed design is actually a differential amplifier 
modified for differential output. Same circuit is 
capable of producing output the activation function 
and the differentiation of the activation function. 
Here two designs are considered for NAF 
1. Differential amplifier as NAF 
2. Modified differential amplifier as NAF with 
differentiation output. 
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7.1. Differential Amplifier Design As A Neuron 
Activation Function (Tan) This block is named as tan 
in the final schematics for Neural Architecture. 
Differential amplifier when design to work in the 
sub-threshold region acts as a neuron activation 
function. 
7.2 Modified Differential Amplifier Design for 
Differentiation Output (fun) Schematic of the design 
shown in the fig10 is used for the tan sigmoid 
function generator with modification for the 
differential output. The NAF function[14] can be 
derived from the same differential pair configuration. 
The structure has to be modified for the differential 
output. 
7.3 Layout issues:As we already discussed that we 
are using tan sigmoid function to realize NAF the 
reason behind using tan sigmoid function is that after 
carried out a mathematical analysis we found that tan 
sigmoid function is best suitable for compression and 
achieving a tangential output. The layout of NAF is 
shown in fig11. 

 
Fig10:Layoout of NAF  Fig11:Implementation of the 
NA using Analog Blocks 
VIII.REALIZATION OF NEURAL 
ARCHITECTURE USING ANALOG 
COMPONENTS 
The components designed in the previous section are 
used to implement the neural architecture. The tan 
block is the differential amplifier block designed in 
section 2.1.3.1. This block is used as the neuron 
activation function as well as for the multiplication 
purpose. The mult is the Gilbert cell multiplier 
designed in section 7.1 The fun is the Neuron 
activation function circuit with differential output 
designed in section 7.2.Fig12 shows exactly how the 
neural architecture of fig2 is implemented using 
analog components. The input layer is the input to the 
2:3:1 neuron. The hidden layer is connected to the 
input layer by weights in the first layer named as w1i. 
The output layer is connected to input layer through 
weights w2j. The op is the output of 2:3:1 neuron. 
The schematic of circuit for image compression is 
shown in figure 8. 

 
 Fig12 a]&b]Basic Back-Propagation Neural 
Network  for image compression 
 

 
Fig 13: Schematic of Compression Block Fig 14: 
Layout of compression block 
 
The Layout of circuit for image compression is 
shown in figure 9.  
The  improved back propagation algorithm which is 
used in this  Fig13]&14]  can be summarized 
Initialize all the weights and biases to a small number  
(approx between -1 and +l. )and input vector, x and 
desired output vector, d.Compute the actual outputs 
of the network defined. 
8.1 Neuron Application -Image Compression and 
Decompression The above proposed NA is used for 
image compression. Image consisting of pixel 
intensities are fed to the network shown in Figure 8 
for compression and then this compressed image act 
as input for the decompression block. The layout 
circuit of decompression block is as shown in fig15. 
The 2:3:1 neuron proposed has an inherent capability 
of compressing the inputs, [11,12] as there are two 
inputs and one output. The compression achieved is 
97.30%. Since the inputs are fed in the analog form 
to the network there is no need for analog to digital 
converters.Fig16 shows the schematic of 
decompression block  
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Fig15 : Schematic of Decompression Block         
Fig16 : Layout of Decompression Block 
 
This is one of the major advantages of this work. A 
1:3:2 neural networks is designed for the 
decompression purpose. The neural network has 3 
neurons in the hidden layer and two in the output 
layer.  
 
Fig17 shows the compression and decompression 
scheme. The training algorithm used in this network 
is Back Propagation algorithm. The error propagates 
from decompression block to the compression bock. 
Once the network is trained for different inputs the 
two architectures are separated and can be used as 
compression block and decompression block 
independently.  

 
Fig17: Image Compression and Decompression using 
proposed neural architecture 
The layout implementation of block diagram of 
compression and decompression block is shown in 
fig18shows the combined schematic of compression 
[13,14] and decompression block.Fig:18 Combined 
Schematic of Compression and Decompression 
Block.The layout implementation of block diagram 
of compression and decompression block is shown in 
fig13&14 shows the combined schematic of 
compression and decompression block: 

 
Fig18: Combined Layout of Compression and 
Decompression block 
IX.BACK PROPAGATION ALGORITHM 
Backpropagation is the most common method of 
training of artificial neural network so as to minimize 
the objective function. It is the generalization of delta 
rule and mainly used for feed forward networks. The 
backpropagation algorithm is understand by dividing 
it into two phases. First phase is propagation and 
second is weight update. 
1) Read the image 
2) Divide it into the  blocks of pixels 
3) Scan each block 
4) Appling each scanned vector to input neuron 
5) Hidden layer 
6) Train the network 
7) Re adjust the weights 
8) Read the next block 
9) Repeat all the steps until the desired error 
value 
9.1. Propagation 
a) Forward propagation of training patterninput 
through the neural network in order to 
generate the propagation output activations. 
b) Backward propagation of the of the propagation 

output activations through the neural 
network using the training pattern target in order 
to generate the deltas of all output and 
hidden in neurons. 
9.2. Weight Update 
a) For each weight synapse it multiply its output delta 
and input activation to get the 
gradient of the weight. 
b) Bring the weight in opposite direction of the 
gradient by subtracting a ratio of it from the weight. 
This ratio influences the speed and quality of 
learning[15,16] and it is called learning rate. The sign 
of the gradient of a weight indicates where the error 
is increasing, that is why the weight must be updated 
in the opposite direction. These phases goes on 
repeating until the performance is of the network is 
satisfactory. 
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Fig19: Notation for three-layered network 
There are (n + 1) × k weights between input sites and 
hidden units and (k +1)×m between hidden and 
output units. Let W1 denote the (n+1)×k matrix with 
component wij

(1) at the i-th row and the j-th column. 
Similarly let W2 denote the (k + 1) × m matrix with 
components wij

(2).We use an overlined notation to 
emphasize that the last row of both matrices 
corresponds to the biases of the computing units. The 
matrix of weights without this last row will be needed 
in the backpropagation step. The n-dimensional input 
vector = (o1, . . . , on) is extended, transforming it 
to ˆo = (o1, . . . , on, 1). The excitation netj of the j-th 
hidden unit is given by: 

 
The activation function is a sigmoid and the output 
Oj(1) of this unit is thus 

 
After choosing the weights of the network randomly, 
the backpropagation algorithm is used to compute the 
necessary corrections.  
 

 
Fig20.The algorithm can be decomposed in the 
following four steps: 
(i) Feed-forward computation 
(ii) Backpropagation to the output layer 
(iii) Backpropagation to the hidden layer 
(iv) Weight updates 

The algorithm is stopped when the value of the error 
function has become sufficiently small.and use 
following steps 
Step 1: Initialize all the weights and biases to a small 
number  (approx between -1 and +l. ) 
Step 2: Read the input vector, x and desired output 
vector, d. 
step 3: Compute the actual outputs of the network 
defined as 

 
where the function f(*) is the nonlinear activation 
function.  
Step 4: Adjust the weights by 

 
Compute derivatives using method of finite 
differences each weight in turn and approximate 
derivatives by 

 
Accuracy improved by make e smaller until round-
off problems Arise 
X.RESULTS AND DISCUSSIONS 
10.1.SIMULATION RESULT FOR GILBERT 
CELL MULTIPLIER 
The designed Gilbert cell is simulated using TSPICE. 
The simulation result shown in the figure 16 is for the 
multiplication of two voltages v1 and v2. v1 voltage 
is 4 Vpp and 100 MHz frequency. v2 is 2 Vpp 10 
MHz frequency.  
simulated results are(using matlab) 

 
Fig21.The output wave is the multiplication of v1 and 
v2 voltage done by the circuit. The output amplitude 
is 5.6 Vpp. The output can be seen matching with the 
theoretical output. 
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Fig22: Multiplication operation of Gilbert cell 
multiplier 
10.1. Simulation Result for Neuron activation 
function 

 
Fig23: Circuit o/p for Neuron Activation function 
block (tan) 
Fig24: Simulation of Image compression 
10.2 Image Compression using Neural Architecture 
Image compression is separately performed using 
neural architecture. The simulation result[17,18,19] 
for image compression are shown in the figure 18 
The input v1 was a sine wave with 2 Vpp voltage at 
10 MHz frequency and input v2 was a sine wave with 
4 Vpp at a frequency 100 MHz. The output of 
compression is a DC signal of 70 mV. 
10.3 Image Decompression using Neural 
Architecture The separate decompression of a 3 Vpp 
sine wave at 100 MHz gives the decompressed output 
as a signal of 7 Vpp. The simulation result of image 
decompression is shown in figure 19. 

 
Fig25: Sim. of Image 
decompression 
Fig26:Imagecompression&Decompression Sim. 
Image Compression and Decompression using Neural 
Architecture The Neural Architecture is extended for 

the application of image compression and 
decompression. 
Fig:27a]&b]Micro wind Simulated results 

 
The simulation result for image compression and 
decompression are shown in the fig27. The input 1 
was a sine wave with 16 Vpp voltage 10 MHz 
frequency and input 2 was a sine wave with 9 Vpp 
voltage and 100 MHz frequency. The compressed 
output was a DC signal of 4 Vpp.The decompressed 
output for input 1 was a 4.5 Vpp sine wave and for 
input 2 was a 4.5 Vpp sine wave[20]. The 
compression we achieved is 97.22 % and the average 
decompression achieved is 60.94%. 
XII.CONCLUSION 
Neural network with their remarkable ability to 
derive meaning from complicated or imprecise data 
can be used to extract patterns and to detect trends 
that are too complex to be noticed by either humans 
or other computer techniques. with the above results 
firstly we say that the selection of neural network 
algorithm for the fast compression  is done using 
MATLAB simulation tool, we conclude that the 
improved back propagation algorithm is used For the 
test case  standard cameramen image   the   efficiency 
is decreased by 0.27   percentage and the converges 
time  increased by 90.63 percentage  and  its analog 
architecture and schismatic is implemented in micro 
wind  tool  Due to its adaptive learning, self-
organization, real time operations and fault tolerance 
via redundant information coding properties it can be 
used in Modelling and Diagnosing the 
Cardiovascular System and in Electronic noses which 
has several potential applications in telemedicine. 
Another application developed was “Instant 
Physician” which represents the “best” diagnosis and 
treatment. This work can be further extended to 
implement neuro fuzzy system with high speed low 
power, CMOS circuit (Layout extraction) in current 
mode as well as for nano scale circuit simulation 
using Double Gate MOSFET (DG MOSFET) 
modeling. 
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