
JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN

ELECTRONICS AND COMMUNICATION

ISSN: 0975 – 6779| NOV 13 TO OCT 14 | VOLUME – 03, ISSUE – 01 Page 998

PERFORMANCE BASED COMPARISON OF TCP

VARIANTS ‘TAHOE, RENO, NEWRENO, SACK’ IN

NS2 USING LINUX PLATFORM

1
HARDIK V. MIYANI,

2
VISHV B. KUKADIYA,

3
 MR. KAPIL S. RAVIYA,

4
MR.DHRUMIL SHETH

1,2
 Student, Electronics & Communication Engineering Dept., C.U.Shah College of

Engineering and Technology, Wadhwancity
3
Assistant Professor, Electronics & Communication Engineering Dept., C.U.Shah

University

erhvmiyani@gmail.com, vishv.92@gmail.com, raviyakapil@gmail.com ,

dhrumildeep@gmail.com

ABSTRACT: TCP/IP protocol, which was formerly developed for wired links, is now an inseparable part of the

Internet. Hence, its competence on wireless links could play a significant role in the performance of the Internet.

The use of original TCP/IP protocol on wireless links in spreading the Internet has encountered some serious

performance issues, the reason being the wired links are very less prone to channel errors and more affected by

congestion. There is no way in TCP to distinguish the correct reason for losses hence losses are not treated

distinctively. The research of more than 25 years has gone through different variants of TCP, out of which most

up-to-date variant TCP SACK (Selective Acknowledgement) is the most resourceful. Its potential to avoid

redundant retransmissions based on SACK information accessible at TCP sender. It should be noticed that even

TCP SACK is powerless of judging the concrete cause of loss i.e. corruption or congestion. In this paper we

will vary different parameters in our scripts and observe the performance of throughput and its graphs. And

we will conclude that which one is the better.

KEYWORDS: Congestion window, Corruption, Throughput, Fast retransmit, Fast recovery, Slow Start

Threshold

1. INTRODUCTION
[1]

TCP was mainly used in wired links. Because wired

links have very less chances of high delay and data

corruption of due to external parameters. Congestion

is the main reason of packet loss on wired links. So,

TCP was designed by keeping in mind the above

parameters. As Technology upgrades, wireless and

heterogeneous networks came into the existence, due

to the requirement of reliable protocol in TCP/IP

model in internet, TCP was adopted as it was on

wired links. Wireless links have severe problem of

variable and high delay with high Bit Error Rate

(BER). So initially, unmodified old TCP started to

perform badly on wireless links. To deal with the

problems of wireless links, a research started in the

field of TCP and modifications were done according

to the requirements to improve the performance.

Variants named Tahoe, Reno, New Reno and SACK

and many more came into existence.

2. BASICS ABOUT TCP VARIANTS

2.1 TAHOE TCP
[4]

Tahoe by Jacobson assumed that congestion signals

are represented by lost segments. It was assumed by

Jacobson that losses due to packet corruption are

much less probable than losses due to buffer

overflows on the network. Therefore, on a loss, the

sender should lower its share of the bandwidth. This

is done by reducing its cwnd to half of the size at

which the loss was found. The reasoning behind this

value of a half is that the decrease in throughput

should be equal to the multiplicative increase of

queue length in the network upon congestion. The

implementation of this multiplicative decrease is

through the use of a tcp variable called ssthresh.

Upon a loss, half of the value of cwnd just before the

loss is recorded in ssthresh. The connection then

resorts back to slow start by setting cwnd to 2

segments. Slow start grows the cwnd exponentially

until it reaches ssthresh from which it will do

congavoid until the same thing happens again until

the connection is terminated. In order to determine

that a packet is lost, we must time the delay of the

packet; from the sender putting into the network and

the time at which we receive the ack for that packet.

This value is known as the round trip time (RTT).

From this value (and the aggregation of timed pairs),

we can use a Retransmission Time-Out (RTO). If an

ack is not received before this RTO, then the sender

should be confident that the packet is lost and should

therefore resend the segment to enable reliable

delivery and movement of the window.

LIMITATIONS OF TCP TAHOE:

TCP Tahoe does not deal well with multiple packet

drops within a single window of data.

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN

ELECTRONICS AND COMMUNICATION

ISSN: 0975 – 6779| NOV 13 TO OCT 14 | VOLUME – 03, ISSUE – 01 Page 999

2. RENO TCP

TCP TAHOE + FAST RECOVERY = TCP RENO

TCP Reno introduced major improvements over

Tahoe by changing the way in which it reacts to

detecting a loss through duplicate

acknowledgements. The idea is that the only way for

a loss to be detected via a timeout and not via the

receipt of a dupack is when the flow of packets and

acks has completely stopped - This would be an

indication of heavy congestion.

MOTIVATION FOR IMPROVING RENO:

In the Internet, packets are often transmitted in bursts

(bursty nature of tcp etc). As a result, losses also

often happen in bursts. This is primarily due to FIFO

(drop tail) queues in routers. The fundamental

problem is that Fast Retransmit assumes that only

one segment was lost. This can result in loss of ack

clocking and timeouts if more than one segment is

lost.

LIMITATIONS OF TCP RENO:

Reno encounters several problems with multiple

packet losses in a window of data (usually in the

order of half a window). This usually happens when

invoking Fast Retransmit and Fast Recovery.

3. NEW RENO TCP
[3]

TCP RENO + RECOVERY OF MULTIPLE

PACKET LOSS = NEW RENO TCP

A modification of Reno lead to New-Reno TCP

which shows that Reno can be improved without the

addition of Selective ACKs but still suffers without

it. Here, the wait for a retransmit timer is eliminated

when multiple packets are lost from a window. New

Reno is the same as Reno but with more intelligence

during fast recovery. It utilizes the idea of partial

acks: when there are multiple packet drops, the acks

for the retransmitted packet will acknowledge some,

but not all the segments send before the Fast

Retransmit. In TCP Reno, the first partial ACK will

bring the sender out of the fast recovery phase. This

will result in the requirement of timeouts when there

are multiple losses in a window, and thus stalling the

tcp connection. In New Reno, a partial ack is taken as

an indication of another lost packet and as such the

sender retransmits the first unacknowledged packet.

Unlike Reno, partial acks don't take New Reno out of

Fast Recovery. This way, it retransmits one packet

per RTT until all the lost packets are retransmitted

and avoids requiring multiple fast retransmits from a

single window of data.

4. SACK TCP

The main difference between the SACK TCP, New

Reno and Reno is in case of multiple packet drops

from one window of data. TCP with selective

acknowledgement is designed to provide information

about the loss of multiple segments in a window of

data. The receiver uses the SACK option to inform

the sender of all successfully received packets but not

cumulatively acknowledged. The sender uses this

information to retransmit selectively only the packets

that were lost.

5. SIMULATION SCENARIO

Figure: 1 Simulation Scenario

6. READING PARAMETERS

For performance measurement, parameters like delay,

drop/error rate, and file size are kept variable for

different variants. TCPTRACE software is used to

trace actual path of data transfer for analysis. XPLOT

software can be used to plot graphs of different

quantities like sequence numbers, round trip time,

congestion window, throughput etc.

Figure: 2 X-Graph for Error Rate = 0.01

 Similarly we can get ERROR RATE = 0.001 and x-

Graphs are shown below,

TAHOE TCP

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN

ELECTRONICS AND COMMUNICATION

ISSN: 0975 – 6779| NOV 13 TO OCT 14 | VOLUME – 03, ISSUE – 01 Page 1000

RENO

NEW RENO

SACK TCP

7. CONCLUSION
New-Reno TCP is a variant of Reno with a little

modification within Fast Recovery algorithm. This

was done in order to solve the timeout problem when

multiple packets are lost form the same window.

Note that higher performances were obtained due to

the little modification of Reno TCP. Although New

Reno solves the timeout problem when multiple

packets are lost form the same window, it can

retransmit only one packet per Round Trip Time.

SACK provides even better performance and gives us

the idea that why it is used currently used

everywhere. It uses two algorithm of fast retransmit

and fast recovery together so we get this enhanced

data rates.

In case of Reno & SACK both, as delay on wireless

link increases, throughput decreases gradually, as

round trip time for each data packet increases before

reaching to destination node as well as for each

acknowledgement packet to reach to the source node.

In case of respective drop/error rate, average

throughput maintained at higher digit in case of

SACK compared to Reno. So, performance

degradation is higher in Reno compared to SACK.

8. REFERENCES

1. Kevin Fall & Sally Floyd, “Simulation – based

comparisons of Tahoe, Reno and SACK TCP”

2. S.Floyd & T. Henderson, “The NewReno

modification to TCP’s Fast Recovery algorithm”,

RFC 2582 April, 1999

3. Data Communication and Networking (Mc Graw

Hill, Author: Forouzan, 5th Edition)

4. T.V.Lakshman, U. Madhow, and B. Suter,

“Window-based error recovery and flow control with

a slow acknowledgment channel: A study of TCP/IP

performance,” in Proc. IEEE Infocom 1997.

5. A. Demers, S. Keshav, and S. Shenker, “Analysis

and simulation of a fair queueing algorithm,” in Proc.

ACM SIGCOMM’89.

