
JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN

ELECTRONICS AND COMMUNICATION

ISSN: 0975 – 6779| NOV 14 TO OCT 15 | VOLUME – 03, ISSUE - 02 Page 1123

OPTIMIZATION OF STATE REDUCTION FOR

STOCHASTIC FINITE STATE SYSTEM

1

SAUMYA DAS,
2

OM PRAKASH,
 3
 DR. BHAVIN S. SEDANI

1
 Assistant Professor, SMIT, SMU

2
 Assistant Professor, JJTU, Rajasthan

3
 Head and Associate Professor, Department of Electronics and Communication

Engineering, VVP Engineering College, Rajkot - Gujarat

ABSTRACT : This paper deal with Real world complex problems have no predefined procedure for solving. It

is impossible to define and determine the exact solution of these problems. These are called Stochastic or

probabilistic system. Consider a Fossil Fired (Oil, Coal, and Gas) generator power system unit. To get the

desired output power at lowest cost, the power system unit is designed as a stochastic finite state system.

Keywords : Particle Swarm Optimization, Constraint Optimization Problems, Unconstraint Optimization

Problem And Economic Load Dispatch Problem.

 INTRODUCTION

In the theory of computation, a stochastic finite state

system or nondeterministic finite automaton

(NFA) is a finite state machine where for each pair of

state and input symbol there may be several possible

next states. This distinguishes it from the

deterministic finite automaton (DFA), where the next

possible state is uniquely determined. Although the

DFA and NFA have distinct definitions, it may be

shown in the formal theory that they are equivalent,

in that, for any given NFA, one may construct an

equivalent DFA, and vice-versa: this is the powerset

construction. Both types of automata recognize only

regular languages. Non-deterministic finite state

machines are sometimes studied by the name

subshifts of finite type. Non-deterministic finite state

machines are generalized by probabilistic automata,

which assign a probability to each state transition.

More recently, stochastic formulations of receding

horizon control are showing great promise in areas

such as dynamic unreliable resource allocation [1],

supply chains [2], portfolio optimization [3]–[5],

dynamic hedging [6], sustainable development [7],

and polymerization reactors [8]. The implementation

of receding horizon control in the different

applications spans a range of approaches, from open-

loop control [3], [4], to a linear feedback form of

control [8], to a full stochastic programming

implementation [6], [9], [10].

Nondeterministic finite automata were introduced in

1959 by Michael O. Rabin and Dana Scott, who also

showed their equivalence to deterministic finite

automata

Intuitive definition

An NFA, similar to a DFA, consumes a string of

input symbols. For each input symbol it transitions to

a new state until all input symbols have been

consumed.

Unlike a DFA, it is non-deterministic in that, for any

input symbol, its next state may be any one of several

possible states. Thus, in the formal definition, the

next state is an element of the power set of states.

This element, itself a set, represents some subset of

all possible states to be considered at once.

An extension of the NFA is the NFA-lambda (also

known as NFA-epsilon or the NFA with epsilon

moves), which allows a transformation to a new state

without consuming any input symbols. For example,

if it is in state 1, with the next input symbol an a, it

can move to state 2 without consuming any input

symbols, and thus there is an ambiguity: is the system

in state 1, or state 2, before consuming the letter a?

Because of this ambiguity, it is more convenient to

talk of the set of possible states the system may be in.

Thus, before consuming letter a, the NFA-epsilon

may be in any one of the states out of the set {1,2}.

Equivalently, one may imagine that the NFA is in

state 1 and 2 'at the same time': and this gives an

informal hint of the powerset construction: the DFA

equivalent to an NFA is defined as the one that is in

the state q={1,2}. Transformations to new states

without consuming an input symbol are called

lambda transitions or epsilon transitions. They are

usually labeled with the Greek letter λ or ε.

The notion of accepting an input is similar to that for

the DFA. When the last input symbol is consumed,

the NFA accepts if and only if there is some set of

transitions that will take it to an accepting state.

Equivalently, it rejects, if, no matter what transitions

are applied, it would not end in an accepting state.

Formal definition

Two similar types of NFAs are commonly defined:

the NFA and the NFA with ε-moves. The ordinary

NFA is defined as a 5-tuple, (Q, Σ, T, q0, F),

consisting of

• a finite set of states Q

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN

ELECTRONICS AND COMMUNICATION

• a finite set of input symbols Σ

• a transition function T : Q × Σ →

• an initial (or start) state q0 ∈ Q

• a set of states F distinguished as

(or final) states F ⊆ Q.

Here, P(Q) denotes the power set of Q. The

ε-moves (also sometimes called NFA-epsilon

lambda) replaces the transition function with one that

allows the empty string ε as a possible input, so that

one has instead

T : Q × (Σ ∪{ε}) → P(Q).

It can be shown that ordinary NFA and NFA with

epsilon moves are equivalent, in that, given either

one, one can construct the other, which recognizes

the same language.

1.2 Properties of NFA-ε

For all one writes

q can be reached from p by going along zero or more

ε arrows. In other words, if and only if there

exists where

that

.

For any , the set of states that can be

reached from p is called the epsilon-

closure of p, and is written as

For any subset , define the ε

as

.

The epsilon-transitions are transitive, in that it may

be shown that, for all

, if

, then

Similarly, if

then

Let x be a string over the alphabet Σ∪{ε

M accepts the string x if there exist both a

representation of x of the form x1x2 ... x

(Σ ∪{ε}), and a sequence of states p0,p1

pi ∈ Q, meeting the following conditions:

1. p0 E({q0})

2. pi E(T(pi-1, xi)) for i = 1, ..., n

3. pn F.

 Implementation
There are many ways to implement a NFA:

• Convert to the equivalent DFA. In some

cases this may cause exponential blowup in the size

of the automaton and thus auxiliary space

proportional to the number of states in the NFA (as

storage of the state value requires at most one bit for

every state in the NFA)

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN

ELECTRONICS AND COMMUNICATION

Σ → P(Q).

Q

distinguished as accepting

. The NFA with

epsilon or NFA-

) replaces the transition function with one that

 as a possible input, so that

own that ordinary NFA and NFA with

epsilon moves are equivalent, in that, given either

one, one can construct the other, which recognizes

if and only if

by going along zero or more

if and only if there

where such

, the set of states that can be

-closure or ε-

.

the ε-closure of P

transitions are transitive, in that it may

and

and

.

and

{ε}. An NFA-ε

if there exist both a

... xn, where xi ∈

1, ..., pn, where

, meeting the following conditions:

1, ..., n

are many ways to implement a NFA:

Convert to the equivalent DFA. In some

cases this may cause exponential blowup in the size

of the automaton and thus auxiliary space

proportional to the number of states in the NFA (as

at most one bit for

• Keep a set data structure of all states which

the machine might currently be in. On the

consumption of the last input symbol, if one of these

states is a final state, the machine accepts the string.

In the worst case, this may require auxiliary space

proportional to the number of states in the NFA; if

the set structure uses one bit per NFA state, then this

solution is exactly equivalent to the above.

• Create multiple copies. For each n way

decision, the NFA creates up to n − 1

machine. Each will enter a separate state. If, upon

consuming the last input symbol, at least one copy of

the NFA is in the accepting state, the NFA will

accept. (This, too, requires linear storage with respect

to the number of NFA states, as there can be one

machine for every NFA state.)

• Explicitly propagate tokens through the

transition structure of the NFA and match whenever a

token reaches the final state. This is sometimes useful

when the NFA should encode additional context

about the events that triggered the transition. (For an

implementation that uses this technique to keep track

of object references have a look at Tracematches.)

Example
The following example explains a NFA

binary alphabet, which determines if the

contains an even number of 0s or an even number of

1s. (Note that 0 occurrences is an even number of

occurrences as well.) Let M = (Q, Σ, T

• Σ = {0, 1},

• Q = {s0, s1, s2, s3, s4},

• E({s0}) = { s0, s1, s3 }

• F = {s1, s3}, and

• The transition function T can be defined by

this state transition table:

0 1 ε

S0 {} {} {S1,

S1 {S2} {S1} {}

S2 {S1} {S2} {}

S3 {S3} {S4} {}

S4 {S4} {S3} {}

The state diagram for M is:

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN

Keep a set data structure of all states which

the machine might currently be in. On the

consumption of the last input symbol, if one of these

states is a final state, the machine accepts the string.

case, this may require auxiliary space

proportional to the number of states in the NFA; if

the set structure uses one bit per NFA state, then this

solution is exactly equivalent to the above.

Create multiple copies. For each n way

− 1 copies of the

machine. Each will enter a separate state. If, upon

consuming the last input symbol, at least one copy of

the NFA is in the accepting state, the NFA will

accept. (This, too, requires linear storage with respect

FA states, as there can be one

Explicitly propagate tokens through the

transition structure of the NFA and match whenever a

token reaches the final state. This is sometimes useful

when the NFA should encode additional context

about the events that triggered the transition. (For an

implementation that uses this technique to keep track

of object references have a look at Tracematches.)

The following example explains a NFA M, with a

binary alphabet, which determines if the input

contains an even number of 0s or an even number of

1s. (Note that 0 occurrences is an even number of

T, s0, F) where

can be defined by

, S3}

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN

ELECTRONICS AND COMMUNICATION

M can be viewed as the union of two DFAs: one with

states {S1, S2} and the other with states {

The language of M can be described by the regular

language given by this regular expression:

Application of NFA-ε
NFAs and DFAs are equivalent in that

is recognized by an NFA, it is also recognized by a

DFA and vice versa. The establishment of such

equivalence is important and useful. It is useful

because constructing an NFA to recognize a given

language is sometimes much easier than const

a DFA for that language. It is important because

NFAs can be used to reduce the complexity of the

mathematical work required to establish many

important properties in the theory of computation.

For example, it is much easier to prove the following

properties using NFAs than DFAs:

• The union of two regular languages is

regular.

• The concatenation of two regular languages

is regular.

• The Kleene Closure of a regular language is

regular.

 State Reduction and State Assignment
If one is able to reduce the total number of states, one

may be able to save on the number of flip

required for a design. This is the optimal situation.

For example if a finite state machine drops from 7

states to 4 states and compact state assignments are

used, the design drops from three flip

flip-flops. A sub optimal situation is when the

number of states is reduced, but the number of flip

flops is not. This does add don't cares to the

combinational logic that generates the next state

equations. This will most likely drop the over all cost

of the finite state machine. Once the number of states

is at a minimum, then a judicious assignment of

states may

further reduce the cost of the next state equations

and/or the cost of the output equations. A set of

heuristic rules is proposed where each rule is directed

toward the reduction of the combinational logic in the

finite state machine design. As opposed to compact

state assignments, one may propose a one

assignment. One-hot is a set of state assignments in

which a unique bit is one in the assignment for each

state. This often leads to a reduction in the logic cost

for the outputs, because in one and only one state a

given output is asserted.

Given a stochastic machine description,the state set

can always be partitioned into classes of equivalent

states by a finite number of calculations. If

equivalence classes containing two or more states are

found, it should be possible to condense the machine

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN

ELECTRONICS AND COMMUNICATION

can be viewed as the union of two DFAs: one with

} and the other with states {S3, S4}.

can be described by the regular

language given by this regular expression:

NFAs and DFAs are equivalent in that if a language

is recognized by an NFA, it is also recognized by a

DFA and vice versa. The establishment of such

equivalence is important and useful. It is useful

because constructing an NFA to recognize a given

language is sometimes much easier than constructing

a DFA for that language. It is important because

NFAs can be used to reduce the complexity of the

mathematical work required to establish many

important properties in the theory of computation.

For example, it is much easier to prove the following

The union of two regular languages is

The concatenation of two regular languages

The Kleene Closure of a regular language is

State Reduction and State Assignment
total number of states, one

may be able to save on the number of flip-flops

required for a design. This is the optimal situation.

For example if a finite state machine drops from 7

states to 4 states and compact state assignments are

from three flip-flops to two

flops. A sub optimal situation is when the

number of states is reduced, but the number of flip-

flops is not. This does add don't cares to the

combinational logic that generates the next state

ely drop the over all cost

of the finite state machine. Once the number of states

is at a minimum, then a judicious assignment of

further reduce the cost of the next state equations

and/or the cost of the output equations. A set of

es is proposed where each rule is directed

toward the reduction of the combinational logic in the

finite state machine design. As opposed to compact

state assignments, one may propose a one-hot state

hot is a set of state assignments in

ch a unique bit is one in the assignment for each

state. This often leads to a reduction in the logic cost

for the outputs, because in one and only one state a

Given a stochastic machine description,the state set

rtitioned into classes of equivalent

states by a finite number of calculations. If

equivalence classes containing two or more states are

found, it should be possible to condense the machine

description in such a way has to leave the family of

distinct input-output relations invariant.

If to each state of a stochastic machine M there

corresponds an equivalent state of machine N and to

each state of N there corresponds an equivalent state

of machine M, Which say that M & N are state

equivalent machines. Among the machines which are

state equivalent to a given machine M those having

the smallest no of states are called Reduced Forms of

M. A machine for which any two states are

distinguishable is said to be in reduced form. The

terminology is consistant since the reduced forms of

any machine M are precisely those machines which

are state equivalent to M and in reduced form.

troduction

Optimization problem formulation

Economic load dispatch (ELD) is an important topic

in the operation of power plants which

up effective generating management plans. The ELD

problem has non-smooth cost function with equality

and inequality constraints which make it diffi

be effectively solved [14]. Real cost functions are

more complex than conventional sec

functions when multi-fuel operations, valve

effects, accurate curve fitting, etc., are considering i

deregulated changing market [16].

The ELD problem may be expressed by minimizing

the fuel cost of generator units under constraints.

Depending on load variations, the output of

generators has to be changed to meet the balance

between loads and generation of a power system. The

power system model consists of n generating units

already connected to the system [13

function without valve-point loadings of the

generating units is given by

F���� 	
���� �
��� � �� ��/�

(7)

A cost function is obtained based on the ripple curve

for more accurate modeling which contains higher

order nonlinearity and discontinuity due to the valve

point effect and should be refined by a sine function.

The ELD problem can be expressed as [1

Minimize operation cost;

� 	 ���� �
��� �
�����
�

���

� ��� sin ���
 ���!� �� �"

Subjects to;

i. Power balance constraints

� �� #$ #%

�

���	 0
and,

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN

description in such a way has to leave the family of

output relations invariant.

If to each state of a stochastic machine M there

corresponds an equivalent state of machine N and to

each state of N there corresponds an equivalent state

of machine M, Which say that M & N are state

ong the machines which are

state equivalent to a given machine M those having

the smallest no of states are called Reduced Forms of

M. A machine for which any two states are

distinguishable is said to be in reduced form. The

the reduced forms of

any machine M are precisely those machines which

are state equivalent to M and in reduced form.

Economic load dispatch (ELD) is an important topic

in the operation of power plants which helps to build

up effective generating management plans. The ELD

smooth cost function with equality

and inequality constraints which make it difficult to

Real cost functions are

more complex than conventional second order cost

fuel operations, valve-point

effects, accurate curve fitting, etc., are considering in

The ELD problem may be expressed by minimizing

the fuel cost of generator units under constraints.

Depending on load variations, the output of

generators has to be changed to meet the balance

between loads and generation of a power system. The

generating units

the system [13]. The fuel-cost

point loadings of the

A cost function is obtained based on the ripple curve

for more accurate modeling which contains higher

order nonlinearity and discontinuity due to the valve

point effect and should be refined by a sine function.

The ELD problem can be expressed as [11,1 2, 17]:

�

� '��(��
� �" �8�

 �8
�

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN

ELECTRONICS AND COMMUNICATION

ISSN: 0975 – 6779| NOV 14 TO OCT 15 | VOLUME – 03, ISSUE - 02 Page 1126

#% 	 � � ��*�+�+

�

+��

�

���

� � *,���

�

���� *,, (8
)
ii. ii. Generating capacity constraints

��(�� ≤ �� ≤ ��(./; 1
= 1,2, … , 6 (8�)
where,

•
� ,
� and �� are the cost coefficients of the

i
th

 generator

• n is the number of generators

• �� is the real power output of the i
th

generator (MW)

• �(��) is the operating cost of unit i (Rs/h)

• #% is the transmission losses (MW)

• ��(./ is the maximum generation output of

the ithgenerator

• ��(�� is the minimum generation output of

the i
th

 generator

• *�+ , *,�and*,, are the *-coefficients

• #$is the total demand (MW).

The key factor in solving an ELD problem is how to

handle the several constraints relating to the problem.

Over the last few decades, kinds of approaches had

been proposed to handle the constraints. These can be

grouped into four categories: ideas that preserve the

feasibility of solutions, penalty-based approaches,

methods that clearly distinguish between feasible and

unfeasible solutions, and hybrid techniques [15]. In

this thesis the penalty function is adopted to address

the constraints in an ELD problem. The introduction

of the penalty term enables to transform a constrained

optimization problem into an unconstrained one. As a

result, the fuel cost function is written as

�((�� , 78)
= � ��(��)

�

���
+ 78 . ℎ� (9)
,

The value of the penalty coefficient 78 is checked at

each iteration, and ℎ is the equality constrained

defined as

 ℎ
= � �� − #$

�

���− #% (10)
Most of these methods were based on penalty

formulations that transform Eq. (8b) into an

unconstrained function �((��, 78) as shown in Eq.

(9), which consisting of a sum of the objective and

the constraints weighted by penalties, and use PSO to

minimize �((��, 78).

A 13-generators electric power system considering

valve-point loading effect has been studied in this

test. In this case, the load demand, PD is taken as

1800MW. 13- generators result are given in Tables

4.8. Although the acquired best solution is not

guaranteed to be the global solution, the Particle

swarm optimization succeeded in finding the

satisfactory solution. The respective operating cost

coefficients for each generator are given in Table 1

Swarm size is taken as 200, plenty parameter is set to

100, error is 10-4 for this problem, c1 and c2 are taken

as 2. The obtained results are presented Table 2.

Gener

ator

numb

er

Generato

r limits

Fuel cost coefficients

;<=<>

(M

W)

;<=?;
(M

W)

ai

(Rs/h

)

bi

(Rs/M

Wh)

ci

(Rs/M

W²h)

1 00 680 0.000

28

8.10 550

2 00 360 0.000

56

8.10 309

3 00 360 0.000

56

8.10 307

4 60 180 0.003

24

7.74 240

5 60 180 0.003

24

7.74 240

6 60 180 0.003

24

7.74 240

7 60 180 0.003

24

7.74 240

8 60 180 0.003

24

7.74 240

9 60 180 0.003

24

7.74 240

10 40 120 0.002

84

8.6 126

11 40 120 0.002

84

8.6 126

12 55 120 0.002

84

8.6 126

13 55 120 0.002

84

8.6 126

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN

ELECTRONICS AND COMMUNICATION

ISSN: 0975 – 6779| NOV 14 TO OCT 15 | VOLUME – 03, ISSUE - 02 Page 1127

Table 2: Result of economic load dispatch

problem for 13-generators

Economic load dispatch problem for 13-generators

data is graphically shown in Figure 1.

Fig. 1: Variation of cost with respect number of

iterations for 13-generator power system

Particle swarm optimization appears to be the most

efficient in terms of faster convergence rate and

quality of solution, which makes it to be much

efficient in finding the global optimum.

CONCLUSION

 This paper proposed PSO for power

system ELD problem considering as a stochastic

finite state system. The results show that the PSO is

better than other in terms of the speed and accuracy.

it greatly enhances the searching ability and

efficiently manages the system constraints. It makes

problem easier because the probability of finding a

solution by chance is large. The successful

optimizing performance on the validation data set

illustrates the efficiency of the approach and shows

that it can be used as a reliable tool for ELD problem

REFERENCES

[1] D. A. Castanon and J. M. Wohletz,[2002] “Model

predictive control for dynamic unreliable resource

allocation,” in Proc. Conf. Decision Control, Las

Vegas, NV, USA, pp. 3754–3759.

 [2] P. Seferlis and N. F. Giannelos[2004]“A two-

layered optimisation-based control strategy for multi-

echelon supply chain networks,” Comp. Chem. Eng.,

vol. 28, pp. 799–809.

 [3] F. Herzog [2005] “Strategic Portfolio

Management for Long-Term Investments: An

Optimal Control Approach,” Ph.D. dissertation, ETH

Zurich, Zurich, Switzerland.

 [4] F. Herzog, S. Keel, G. Dondi, L. M. Schumann,

and H. P. Geering,[2006] “Model predictive control

for portfolio selection,” in Proc. Amer. Control

Conf., Minneapolis, MN, pp. 1252–1259.

[5] F. Herzog, G. Dondi, and H. Geering,[2007]

“Stochastic model predictive control and portfolio

optimization,” Int. J. Theor. Appl. Finance, vol. 10,

no. 2, pp. 203–233.

[6] P. Meindl and J. A. Primbs,[2004] “Dynamic

hedging with stochastic volatility using receding

horizon control,” in Proc. Financial Eng. Appl.,

Cambridge, MA, Nov. 8–10, pp. 142–147.

 [7] P. D. Couchman, M. Cannon, and B.

Kouvaritakis [2006] “MPC as a tool for sustainable

development integrated policy assessment,” IEEE

Trans. Automat. Control, vol. 51, no. 1, pp. 145–149.

[8] D. H. van Hessem and O. H. Bosgra,[2004]

“Closed-loop stochastic model predictive control in a

receding horizon implementation on a continuous

polymerization reactor example,” in Proc. Amer.

Control Conf., Boston pp. 914–919.

[9] D. M. de la Peña, A. Bemporad, and T.

Alamo,[2005] “Stochastic programming applied to

model predictive control,” in Proc. 44th IEEE Conf.

Decision Control Eur. Control Conf., Sevilla, Spain,

pp. 1361–1366.

[10] F. Herzog, G. Dondi, S. Keel, L. Schumann, and

H. Geering, [2007]“Solving ALM problems via

sequential stochastic programming,” Quantitative

Finance, vol. 7, no. 2, pp. 231–244.

[11] Dhillon, J.S. and Kothari, D.P. [2004], Power

System Optimization, Prentice Hall of India.

[12] Dao-Hyun Choi and Se-Young Oh [2000], A

new mutation rule for Evolutionary Programming

motivated from back propagation learning, IEEE

transaction on Evolutionary Programming, vol.4,

no.2, pp.188-190.

[13]Kennedy, J., Eberhart, R. C. and Shi, Y. [2001],

Swarm intelligence. San Francisco: Morgan

Kaufmann Publishers.

[14]Meng, Ke, Wang, H. G., Dong, Z. Y. and Wong,

K. P. [2010], Quantum-Inspired Particle Swarm

Optimization for Valve-Point Economic Load

Dispatch, IEEE transactions on power systems, vol.

25, no. 1, pp.215-222.

0

5000

10000

15000

20000

25000

0 50 100 150

C
o

st

Number of iterations

S.N0 Iterations F(P)

1 40 22973.91

2 50 22983.79

3 60 23455.60

4 80 22550.63

5 100 22024.40

6 110 22145.90

7 120 18189.83

8 130 18177.25

9 140 18161.07

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN

ELECTRONICS AND COMMUNICATION

ISSN: 0975 – 6779| NOV 14 TO OCT 15 | VOLUME – 03, ISSUE - 02 Page 1128

[15]Parsopoulos, K. E., and Vrahatis, M. N. [2002],

Particle swarm optimization method for constrained

optimization problems. In P. Sincak, J. Vascak, V.

Kvasnicka & J. and Pospichal (Eds.), intelligent

technologies–theory and application (New trends in

intelligent technologies). Frontiers in artificial

intelligence and applications, vol. 76, pp. 214–220.

Amsterdam: IOS Press, ISBN:1-58603-256-9.

[16]Saber A. Y., Chakraborty S., Razzak S.M. Abdur

and Senjyu T. [2009], Optimization of economic load

dispatch of higher order general cost polynomials and

its sensitivity using modified particle swarm

optimization, Electric Power Systems Research, vol.

79, no. 1, pp. 98–106.

[17]Vlachogiannis, J. G. and Lee, K. Y. [2009],

Economic Load Dispatch—A Comparative Study on

Heuristic Optimization Techniques With an

Improved Coordinated Aggregation-Based PSO,

IEEE Transactions On Power Systems, vol. 24, no. 2,

pp. 991-1001

