
JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN ELECTRONICS AND

COMMUNICATION ENGINEERING

ISSN: 0975 – 6779| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE - 02 Page 500

STUDY, DESIGN AND SIMULATION OF FPGA

BASED USB 2.0 DEVICE CONTROLLER

1
 MS. PARUL BAHUGUNA CD

1
M.E. [VLSI & Embedded System Design] Student, Gujarat Technological University

PG School, Ahmedabad, Gujarat.

parulbahuguna@ymail.com

ABSTRACT: The Universal Serial Bus (USB) was introduced to the world of PC to solve the growing

problem of how to connect peripherals to a PC. Embedded considerations for using USB in a design are split

between need to implement functionality as a peripheral device, a host or both as in OTG. USB is host–centric

tree topology where all devices are hooked to the host by a set of hubs. Each device supports up to 32 endpoints:

16 in and 16 out. USB support for embedded design, facilitating the implementation of both peripherals and

host functionality. In this project the UBS protocols I will carry out study of USB 2.0 (HI-SPEED USB)

protocols, logic design to implement the protocol and verifying the design with simulations. The main goal is to

obtain the efficient FPGA based device controller IP core for USB 2.

Keywords—USB2.0, Super-speed USB, OTG, FPGA, Verilog, CRC, NRZI, Bit-stuffing, PID, UTMI,

Synopsys Design Compiler.

I: INTRODUCTION

USB 2.0 is an Industry-wide, host oriented

protocol, employing serial bus, supporting up to

127 devices and hot insertion. USB 2.0 represents

a great advance in speed while keeping a low-cost

solution that supports transfer rates of up to 480

Mbps. With full support for real-time data, voice,

audio, and video it is the chosen protocol for most

PC peripherals today. Comprehension of various

PC configurations and form factors make the USB

a multifunctional protocol capable of servicing

various solutions.

The USB is a generic protocol making its interface

capable of quick diffusion into product. It

improves PC’s capability by enabling new classes

of devices giving the USB a capability to be

implemented in new developed devices, advancing

with technology. Fully backward compatibility of

USB 2.0 for devices built to previous versions of

the USB specification.

The protocol engine of USB performs Sync

generation and detection, NRZI encoding and

decoding, bit-stuffing and d-stuffing, CRC check

and generation, packet identifier (PID) generation,

decoding and verification, address recognition and

handshake evaluation and response. Acting on a

received token and analysing the token’s PID,

address and endpoint number fields, the protocol

engine can handle USB packets and transactions

based on data sequencing and state machine logic.

Protocol Engine that I have carried out complies

with High Speed USB 2.0 specification with a

transfer rate of 480Mbps. Protocol Engine

performs transaction to/from host. Protocol Engine

supports four types of transactions: Control, Bulk,

Isochronous, and Interrupt.

Main goal of the USB controller design is to

implement it into FPGA which can be used in

FPGA based embedded system (as an IP core).

II: USB 2.0 DEVICE CONTROLLER

A typical USB controller contains a USB transceiver,

a serial interface engine, buffers to hold USB data,

and registers to store configuration, status, and

control information relating to USB communications.

The Transceiver

The USB transceiver provides a hardware interface

between the device’s USB connector and the circuits

that control USB communications.

The Serial Interface Engine

The circuits that interface to the transceiver form a

unit called the serial interface engine (SIE). The SIE

typically handles the sending and receiving of data in

transactions. A typical SIE does all of the following:

� Detect incoming packets.

� Send packets such as token, data and

handshake.

� Detect and generate Start-of-Packet, End-of-

Packet, Reset, and Resume signalling.

� Encode and decode data in the format

required on the bus (NRZI with bit stuffing).

� Check and generate CRC codes.

� Check and generate Packet Identifiers

(PIDs).

� Convert between USB’s serial data and

parallel data in registers or memory.

Buffers

USB controllers use buffers to store recently received

data and data that’s ready to be sent on the bus.

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN ELECTRONICS AND

COMMUNICATION ENGINEERING

ISSN: 0975 – 6779| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE - 02 Page 501

Buffers that hold transmitted or received data are

often structured as FIFO (first in, first out) buffers.

Each read of a receive FIFO returns the byte that has

been in the buffer the longest. Each write to a

transmit FIFO stores a byte that will transmit after all

of the bytes already in the buffer have transmitted.

Yao-Xuan-Lei and Jingcheng (2010) proposed that

the data transfer is achieved in slave FIFO mode

while the controlling commands uses

microprocessors in FPGA’s through endpoint-

0[11].This offers high-speed data communication.

III: USB PACKET FORMAT

All USB data is sent serially, of course, and least

significant bit (LSB) first. USB data transfer is

essentially in the form of packets of data, sent back

and forth between the host and peripheral devices.

Initially, all packets are sent from the host, via the

root hub and possibly more hubs, to devices. Some

of those packets direct a device to send some

packets in reply.

USB packets may consist of the following fields:

1. Sync field: All the packets start with this sync

field. The sync field is 8 bits long at low and full

speed or 32 bits long for high speed and is used to

synchronize the clock of the receiver with that of

the transmitter. The last two bits indicate where the

PID fields starts.

2. PID field: This field (Packet ID) is used to

identify the type of packet that is being sent. The

PID is actually 4 bits; the byte consists of the 4-bit

PID followed by its bit-wise complement, making

an 8-bit PID in total. This redundancy helps detect

errors. There is 4 bits to the PID, however to insure

it is received correctly, the 4 bits are complemented

and repeated, making an 8 bit PID in total.

3. ADDR field: The address field specifies which

device the packet is designated for. Being 7 bits in

length allows for 127 devices to be supported.

4. ENDP field: This field is made up of 4 bits,

allowing 16 possible endpoints. Low speed devices

however can only have 2 additional endpoints on

top of the default pipe.

5. CRC field: Cyclic Redundancy Checks are

performed on the data within the packet payload.

All token packets have a 5-bit CRC while data

packets have a 16-bit CRC.

6. EOP field: This indicates End of packet. This is

signaled by a Single Ended Zero (SE0) for

approximately 2 bit times followed by a J for 1 bit

time.

The USB packets come in four basic types, each

with a different format and CRC field:

1) Handshake packets

2) Token packet

3) Data packet

Handshake Packet

Handshake packets consist of a PID byte, and are

generally sent in response to data packets. The three

basic types of handshake packets are

1) ACK, indicating that data was successfully

received.

2) NAK, indicating that the data cannot be

received at this time and should be retried.

3) STALL, indicating that the device has an

error and will never is able to successfully

transfer data until some corrective action is

performed.

4) NYET which indicates that a split

transaction is not yet completes.

5) ERR handshake to indicate that a split

transaction failed.

Fig. 1 Handshake Packet format

Token Packet

Token packets consist of a PID byte followed by 11

bits of address and a 5-bit CRC. Tokens are only

sent by the host, not by a device.

There are three types of token packets.

1) In token - Informs the USB device that the

host wishes to read information.

2) Out token- informs the USB device that the

host wishes to send information.

3) Setup token - Used to begin control

transfers.

Fig. 2 Token Packet format

Data Packet

There are two basic data packets, DATA0 and

DATA1. Both consist of a DATA PID field, 0-1023

bytes of data payload and a 16-bit CRC. They must

always be preceded by an address token, and are

usually followed by a handshake token from the

receiver back to the transmitter.

Fig. 3 Data Packet format

SOF Packet

The USB host transmits a special SOF (start of

frame) token, containing an 11-bit incrementing

frame number in place of a device address. This is

used to synchronize isochronous data flows.

Fig. 4 Start of frame packet format

IV: PROPOSED ARCHITECTURE

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN ELECTRONICS AND

COMMUNICATION ENGINEERING

ISSN: 0975 – 6779| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE - 02 Page 502

Fig. 5 A Proposed Architecture of USB 2.0 Device

Controller with SIE (Serial Interface Engine).

SYNC DETECTOR
When the receiver detects encoded SYNC pattern

“00000001”, the Receive state machine will enter

into strip sync state where the SYNC pattern is

stripped off. To detect the SYNC pattern a state

machine is developed. It checks every bit for every

rising edge of the clock. If the pattern is detected, a

signal called sync detected is enabled. This signal is

checked by the Receive state machine. If the signal is

high, the Receive state machine will enter into strip

sync state where RX active signal is asserted and the

state machine will enter into RX data state.

NRZI DECODER

The received data on DP, DM lines are NRZI

decoded. The NRZI Decoder simply XOR the present

bit with the provisionally received bit. During NRZI

decoding, the receiver state machine is in RX wait

state. Instead of defining logic 0’s and 1's as voltages,

NRZI encoding defines logic 0 as a voltage change,

and logic 1 as a voltage that remains the same. Each

logic-0 results in a change from the previous state.

Each logic-1 results in no change in the voltages. The

bits transmit least-significant-bit (LSB) first.

BIT D-STUFFING

This block checks for ‘0’ bit after 6 consecutive 1’s.

If there is no ‘0’ bit after six 1’s then there arises

NAK. And when it encounters next ‘0’ bit then it

removes that extra stuffed ‘0’ bit and continues to

check for next consecutive 1’s.

PID CHECK

This block will check for the PID packet. It will

check whether the 4-bit of MSB and 4-bit of LSB are

compliment of each other or not. They should be

compliment of each other, if there is no transmission

error. This block compares them and if they are not

compliment of each other then it introduces a NAK

signal saying that PID doesn’t match.

Fig. 6 Structure of Packet ID

CRC GENERATION
CRC5:- The CRC5 module is used whenever a token

packet is received. A token packet has a crc5 field at

its tail which has to be checked on arrival. The data

part of the token is composed of the endpoint number

and the device’s address. This information is inserted

into the data_in (11 bit) entrance which then

produces the correct CRC5 after a single clock.

CRC16:- The CRC16 module is used whenever a

data packet or a setup packet is received. Each data

packet in a transfer contains crc16 field in its tail.

Upon each clock cycle the data is inserted into the

module’s data_in (16 bits). After the last word is

processed by the module we receive the correct crc16

in the module’s output.

CRC CHECKING

This block will compare the CRC generated and the

original CRC. It will check whether the CRC

transmitted and CRC received are same or not. The

receiver will also generate a CRC for a particular

packet.

If both the CRC generated and received are same

then it acknowledges and operation is preceded,

otherwise, it sends a (NAK) not acknowledge signal.

Hence, the whole transaction is stopped and whole

packet is transmitted again.

RECEIVER STATE MACHINE
The receiver module is designed by considering all

the above specifications. Verilog is used to design the

receiver module. The receiver module of the UTMI

consists of various blocks such as SYNC detector,

NRZI decoder, bit D-stuffing, receive shift and hold

Register and EOP detector. A receive state machine

is developed by considering all the states given by

USB 2.0 receive state machine. Initially the receiver

is at Reset state where the reset signal is high and RX

active and RX valid signals are low. If reset signal

goes low the state of the receiver is changed to RX

wait state where it is waiting for SYNC pattern.

The receiver module has been implemented by

considering the fallowing specifications.

� When SYNC pattern is detected that should

be intimated to the SIE.

� If a zero is not detected after six consecutive

1’s an error should be reported to the SIE.

� When EOP pattern is detected that should be

intimated to the SIE.

TRANSMITTER STATE MACHINE

The transmitter module is designed by considering all

the above specifications. Verilog is used to design the

transmitter module. The transmitter module of the

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN ELECTRONICS AND

COMMUNICATION ENGINEERING

ISSN: 0975 – 6779| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE - 02 Page 503

UTMI consists of various blocks such as SYNC

generator; transmit hold and shift register, bit-

stuffing, NRZI encoder and EOP generator. A

transmit state machine is developed by considering

all the states given by USB 2.0 transmit state

machine. Initially the transmitter is at Reset state

where the reset signal is high. If reset signal goes low

state the state of the transmitter is changed to TX

wait state where it is waiting for assertion of TX

valid signal by the SIE.

The transmitter module of UTMI has been

implemented by considering the following

specifications.

� The SYNC pattern “00000001” has to be

transmitted immediately after the transmitter

is initiated by the SIE.

� After six consecutive 1’s occur in the data

stream, a zero to be inserted.

� The data should be encoded using Non

Return to Zero Invert on 1(NRZI -1)

encoding technique.

� The EOP pattern two single ended zeros (D+

and D- lines are carrying zero for two clock

cycles) and a bit 1 have to be transmitted

after each packet or after SIE suspends the

transmitter.

PID GENERATION

Packets are of different types. Hence, there is unique

predefined packet ID’s for each packet type. So these

packets ID’s are generated according to the operation

to be performed. Packet ID’s are unique for token,

data, and handshake packet, due to which controller

can understand which packet transfer is going on.

BIT-STUFFING

Bit stuffing is required because the receiver

synchronizes on transitions. If the data is all 0’s, there

are plenty of transitions. But if the data contains a

long string of 1’s, the lack of transitions could cause

the receiver to get out of sync.

If data has six consecutive 1’s, the transmitter stuffs,

or inserts, a 0 (represented by a transition) after the

sixth 1. This ensures at least one transition for every

seven bit widths. The receiver detects and discards

any bit that follows six consecutive 1’s.

Bit stuffing can increase the number of transmitted

bits by up to 17 percent. In practice the average is

much less. The bit-stuffing overhead for random data

is just 0.8 percent, or one stuff bit per 125 data bits.

NRZI ENCODER
This block will do just the reverse of NRZI decoder.

It will check when the input bit is high. And then it

will toggle the output bit. The result of this block will

give NRZI encoded data.

EOP DETECTOR
A state machine is developed for EOP detection,

which is invoked at every rising edge of the clock.

When two single ended zeroes fallowed by a ‘J’ state

are detected, it asserts a signal called eop_detect

which is checked by the Receive state machine at

every rising edge of the clock. When this signal is

high, the receiver state machine will enter in to Strip

EOP state where the EOP pattern is stripped off and

RX active, RX valid signals are negated. At the next

rising edge of the clock. The Receive state machine

will enter into the RX wait state.

V: SIMULATION RESULTS

NRZI ENCODER

The original incoming data is converted into NRZI

form. Whenever input is zero (0), output bit is

toggled and whenever input is 1, output remain the

same as previous (i.e. it does not changes). This can

be understood by the figure below.

NRZI DECODER

The input sequence is: - 0010000100110 (NRZI

encoded data).

Output sequence will be: - 0100111001010 (This is

the original data).

SYNC DETECTION
The Sync “00000001” is detected by this block. Once

the sync is detected, it enables the next block. So as

we can see the NRZI decoder block will be enables,

as nrzidec_en is made high (as an output). This

enable will then go and trigger the NRZI decoder

block to perform operation.

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN ELECTRONICS AND

COMMUNICATION ENGINEERING

ISSN: 0975 – 6779| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE - 02 Page 504

BIT- STUFFING

After getting six consecutive 1’s, a ‘0’ bit is inserted.

Here multiplexer operation is used to hold the input

data for 1 cycle and add a stuffed bit in between.

VI: CONCLUSION

This design implements the USB2.0 device controller

which is efficient to perform all the data operations

such as data encoding/decoding, error detection, etc.

The results obtained are cross checked with the USB

protocol specifications. This provides a functional

FPGA based model which can be further used as an

IP core.

REFRENCES

[1]Universal Serial Bus Specification Revision 2.0.

11 October 2011. Retrieved 8 September 2012.

[2]USB 2.0 Specifications:

http://www.usb.org/developers/docs/usb_20_0818

10.zip

[3]USB 2.0 Transceiver Macrocell Interface

(UTMI):

http://www.intel.com/technology/usb/download/2_

0_xcvr_macrocell_1_05.pdf

 [4]Algorithms for Cyclic Redundancy Code

(CRC) Computation:

http://ishaksuleiman.tripod.com/00000.pdf

[5] www.ieeexplore.iee.org

[6] www.usb.org

[7] www.wikipedia.com

[8] “USB Complete- 3
rd

 Editions” By “Jan

Axelson”.

[9] “Universal Serial Bus System Architecture”

By “Don Anderson”.

[10] John Keithley L. Difuntorum, Kristine Mari U.

Matutina, Al Jerome Mervyn Z.Tong Anastacia

Ballesil Alvarez, Joy Alinda Reyes Madamba “A

USB 2.0 Controller for an ARM7TDM-S

Processor Implemented in FPGA” Nov. 2011.

[11] Wu Yao, Zhou Xuan; Tang Lei; Li

Jingcheng “A Date Transfer and Control System

Solution Based on EZ-USB 2.0 for FPGA

Applications” Nov. 2010.

