
JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN

COMPUTER SCIENCE AND APPLICATIONS

ISSN: 0975 – 6728| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE – 02 Page 146

PATHOLOGY OF TREES, TREE SEARCHES &

THEIR COMPUTATIONAL COMPLEXITIES

1
 PARAG BHALCHANDRA,

2
 DR.S.D.KHAMITKAR,

3
 S.N.LOKHANDE

School of Computational Sciences, S.R.T.M.University, Nanded, MS, India, 431606.

Srtmun.parag@gmail.com,s.khamitkar@gmail.com,sana_lokhande@rediffmail.com

ABSTRACT : Searching trees is a most interesting application of Artificial Intelligence. Over the period of

time, many innovative methods have been evolved to better search trees with respect to computational

complexities. In this paper, we have tried to sketch fundamental aspects, pathological point of view to trees as

well as their searching processes. We are hopeful that our contribution will be helpful for the researches

working on tree searches.

Keywords : Trees , Search, Asymptotic Complexity, Brute Force, Heuristics

1. INTRODUCTION

Representation of values in any computational

domain is fundamentally important. This

representation is mainly carried out by using data

structures. For the domain of geometric computation,

a few predominate representations have emerged.

These include discrete space representations like

arrays of lattice points, topological representations

like boundary-representations, parametric surfaces,

simplified decompositions and trees [1]. In

computational paradigms such as algorithm analysis

and complexity theories, trees are widely used data

structures that simulate hierarchical structures with a

set of linked nodes [2]. Trees find occurrence in

Discrete Mathematics, Population Studies, Graph

theories, Network Design Theories, Compilation &

Parsing approaches, Optimization Theories, etc

[1,6,7,12]. Beside these, trees are widely used for

partitioning as every node/ element in them work as a

decision making point. Trees are powerful tool for

organizing data objects based on keys. They are

equally useful for organizing multiple data objects in

terms of hierarchical relationships. A tree can be

defined recursively as a collection of nodes starting at

a root node, where each node is a data structure

consisting of a value, together with a list of nodes,

called children nodes, with the constraints that no

node is duplicated. When we examine a non-leaf

node, we see that the node has trees growing

underneath it, and we say that the node has children

sub trees. A tree has many levels depicting sub trees,

we can think of a family tree where the children are

grouped under their parents in the tree.

Tree structures have made an excellent alternative to

arrays, especially when the data stored within them is

keyed or has internal structure that allows one

element to be related to, or saved within

another[9,11].This highlights their usefulness for

complexity reduction and optimization processes

[10]. Trees can hold objects that are sorted by their

keys. For example, the nodes are ordered so that all

keys in a node's left subtree are less than the key of

the object at the node, and all keys in a node's right

subtree are greater than the key of the object at the

node. Such arrangement drastically reduces searching

time and related time complexity. Trees can also hold

objects that are located by keys that are sequences

[7]. Trees can represent a structured object, such as a

house that must be explored by a robot or a human

player in an adventure game, along a specific path

from the source. Trees are also useful to represent

phrase structure of sentences, which is crucial to

language processing programs / parse trees.

A tree can be defined abstractly as an ordered tree,

with a value assigned to each node. If in a tree, an

ordering of the nodes at each level is prescribed then

such tree is called as an ordered tree. If we delete the

root and its edges connecting the node at level 1, we

obtain a set of disjoint trees. A set of disjoint trees is

called a forest. Any node of a tree is the root of some

subtree. Therefore, sub trees are seen immediately

below a node form a forest. The tree can be also

defined in a recursive fashion. According to this

definition, a tree contains one or more nodes such

that one of the nodes is called a root while all the

other nodes are partitioned into a finite number of

trees called sub trees. It can be defined as a restricted

graph. This restriction imposed upon the graph yields

a general tree. Each general tree can be represented

by an equivalent binary tree. A tree can be analyzed

mathematically as a whole. If represented as a data

structure, it is usually represented and worked with

separately by node rather than as a list of nodes and

adjacency list of edges between nodes. Indeed, given

a list of nodes, and for each node a list of its children,

one cannot tell if this structure is a tree or not without

analyzing its global structure and checking that it is

in fact topologically a tree . In terms of references, a

tree is a special kind of directed graph, with a global

constraint on its topology namely no loops as an

undirected graph. Trees have built in recursive

aspects .Recursively, a tree is defined as a node (the

root), which itself consists of a value (of some data

type, possibly empty), together with a list of nodes

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN

COMPUTER SCIENCE AND APPLICATIONS

ISSN: 0975 – 6728| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE – 02 Page 147

(possibly empty). Mathematically, tree is viewed as a

whole, a tree data structure is an ordered tree

generally with values attached to each node [2,3,9].

Concretely, it is: A rooted with the "away from root"

direction meaning:

1. A directed graph , whose

underlying undirected graph is a tree (any two

vertices are connected by exactly one simple path),

2. With a distinguished root (one vertex is

designated as the root), which determines the

direction on the edges (arrows point away from the

root; given an edge, the node that the edge points

from is called the parent and the node that the edge

points to is called the child), together with an

ordering on the child nodes of a given node, and a

value (of some data type) at each node.

3. There is exactly one path connecting any

two nodes in a tree

4. A tree with n nodes has n-1 edges.

5. A full binary tree with n internal nodes has

n+ 1 external node.

6. The height of a complete binary tree with n

internal nodes is about log2n

Above discussion implies that, we can organize the

data so that items of information are related by the

branches. Thus a tree is a finite set of one or more

nodes such that:

1. There is a specially designated node called

the root.

2. The remaining nodes are partitioned into n >

0 disjoint sets T1,…, Tn, where each of these sets is a

tree. We call T1,…, Tn the sub trees of the root.

3. Often trees have a fixed , bounded

branching factor particularly always having number

of child nodes that determines whether tree is binary

(two children), ternary (three children) or a m-ary

tree[8] (possibly many non-empty child nodes)

The parent-child relationship can be extended

naturally to ancestors and descendants. Informally,

the ancestors of a node are found by following the

unique path from the node to its parent, to its parent’s

parent, and so on. Strictly speaking, a node is also its

own ancestor. The descendant relationship is the

inverse of the ancestor relationship, just as the parent

and child relationships are inverses of each other. The

length of the path is k −1, one less than the number of

nodes on the path. Note that a path may consist of a

single node (if k = 1), in which case the length of the

path is 0.

Figure 1 : General Trees with root node and other

three nodes a,b,c

Above figure shows different forms of a tree with a

root node and other three nodes a,b,c . From figure,

we can say that a tree is associated with following

terminology,

1. Root of the tree: The top node of the tree

that is not a subtree to other node, and has two

children of subtrees.

2. Node: It is stands for the item of information

and the branches to other nodes.

3. The degree of a node: It is the number of

subtrees of the node.

4. The degree of a tree: It is the maximum

degree of the nodes in the tree

5. The parent node: a node that has subtrees is

the parent of the roots of the subtrees

6. The child node: a node that is the roots of

the subtrees are the children of the node

7. The Level of the tree: We define the level of

a node by initially letting the root be at level one

8. The depth of a tree: It also called height of a

tree. It is the maximum level of any node in the tree

2. DISCUSSIONS AND ANALYSIS OF

TREE SEARCHING METHODS

Searching is frequently associated with trees. Such

search is called Tree Search, since long has been a

topic of interest in Artificial Intelligence [9,11,13].

There are two different strategies for searching a

solution space. One of these strategies is data-driven.

A data-driven strategy starts at the root and traverses

the branches of the tree until it finds the solution. The

other is a goal-driven strategy that starts at the

solution and then tries to find a path back to the

starting point. The goal-driven strategy is also

commonly called backtracking. The basic tree search

algorithms found in the literature are either data-

driven strategies or goal driven strategies.

Irrespective of the strategy the algorithm uses, it is

witnessed that the traversing operation is carried out

on trees to find the solution or goal. A basic

requirement for tree searching is invoking a traversal

process that visits every node to cross check required

goal. Compared to linear data structures like linked

lists or one dimensional arrays, which have a

canonical method of traversal namely in linear order,

tree structures can be traversed in many different

ways. For a binary tree, starting at the root, there are

three main steps that can be performed and the order

in which they are performed defines the traversal

type. These steps are: performing an action on the

current node, traversing to the left / right child node,

and then traversing to the right/ left child node.

Traversing a tree involves iterating / looping over all

nodes in some manner[9]. Because from a given node

there is more than one possible next node as it is not

a linear data structure, then, assuming sequential

computation, some nodes must be deferred – stored

in some way for later visiting. This is often done via

a stack (LIFO) or queue (FIFO). As a tree is a self-

referential and recursively defined data structure,

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN

COMPUTER SCIENCE AND APPLICATIONS

ISSN: 0975 – 6728| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE – 02 Page 148

traversal can naturally be described by recursion

where the deferred nodes are stored implicitly .While

traversing, we need no memory other than the current

and the previous node/state. Such traversal

algorithms are very simple:

1. If the previous node is this node’s parent

node, descend to the left child node.

2. If the previous node is this node’s left child

node, descend to the right child node.

3. If the previous node is this node’s right child

node, ascend to the parent node.

Traversal is complete when an attempt to ascend to

the parent node fails because there is no parent.

Literature shows that the above three traversals are

named as Pre order, Post order and In order

traversals[9]. The name given to above particular

style of traversal comes from the order in which

nodes are visited. Technically, these three belongs to

one of the simple way to intervene the tree space.

Thus we need to study traversal techniques if we

want to search something from trees. Further

searching in a tree is far quick than searching in a

linear structure. This discussion highlights that the

search perform better when data is structured as a

tree. Trees, and particularly binary trees, appear

frequently in the classification literature [11]. Many

applications, such those found in combinatorial

optimization, graph searching, Network structure

Analysis, can be addressed by searching through a

large tree of possible solutions. Since search

problems reflects fundamental task that must be

tackled quite frequently, researchers have attempted

to develop algorithms efficient in terms of Time or

Space Complexities [8,9]. For example, in Artificial

Intelligence there has been extensive research into

search algorithms for problems such as propositional

satisfability and constraint satisfaction problems.

Tree search methods are categorized as Informed

,Uninformed, Exhaustive, Brute force, Uniform,

Complete ,Optimal , Local, Backtracking depending

upon the style of searching , amount of time spent in

searching, does or does not take into account the

specific nature of the problem, guarantee to find the

goal, etc[2,4] .

The most common categories are Brute Force Search

methods and Heuristic Search methods [2,11]. These

methods are associated with specific data structures

and follow a similar searching pattern. The search

begins by expanding the initial node i.e., by

generating successors. At each later step, one of the

previously generated nodes is expanded and the

process continues until a goal node is found. Both

these categories differ in the way “How the

generated node is chosen for expansion?” The

Heuristic Search Algorithms take advantage of the

property of maintaining current minimum and

eliminating from the search process, the sub trees

whose nodes exceed in cost and value of current

minimum. They need additional domain specific

knowledge to operate. A*. AO*, Best-First Search,

etc are the few examples of Heuristic Search

methods. On other hand, Brute Force Search

Algorithms are useful when no additional

information is available. These are blind in the sense

that they go through all possible answers to the

problem and chose the best one. Hence they are weak

and less efficient. Depth First Search (DFS) and

Breadth First Search (BFS) are the two most widely

used Brute Force Search methods [2]. No doubt,

there exits many ways of searching, technically, there

are only two ways to penetrate into trees does one go

down first (depth-first: first child, then grandchild

before second child) or across first (breadth-first: first

child, then second child before grandchildren).

Depth-first traversal is further classified by position

of the root element with regard to the left and right

nodes. Imagine that the left and right nodes are

constant in space, then the root node could be placed

to the left of the left node (pre-order), between the

left and right node (in-order), or to the right of the

right node (post-order). There is no equivalent

variation in breadth-first traversal – given an ordering

of children; "breadth-first" is unambiguous. While

traversal is usually done for trees with a finite

number of nodes and hence finite depth and

finite branching factor, it can also be done for infinite

trees. This is of particular interest in functional

programming, as infinite data structures can often be

easily defined and worked with, though they are not

strictly evaluated, as this would take infinite time.

Some finite trees are too large to represent explicitly,

such as the game tree for chess and so it is useful to

analyze them as if they were infinite. For infinite

trees, simple algorithms often fail. For example,

given a binary tree of infinite depth, a depth-first

traversal will go down one side (by convention the

left side) of the tree, never visiting the rest, and

indeed if in-order or post-order will never

visit any nodes, as it has not reached a leaf (and in

fact never will). By contrast, a breadth-first (level-

order) traversal will traverse a binary tree of infinite

depth without problem, and indeed will traverse any

tree with bounded branching factor [5]. On the other

hand, given a tree of depth 2, where the root node has

infinitely many children, and each of these children

has two children, a depth-first traversal will visit all

nodes, as once it exhausts the grandchildren (children

of children of one node), it will move on to the next

(assuming it is not post-order, in which case it never

reaches the root). By contrast, a breadth-first traversal

will never reach the grandchildren, as it seeks to

exhaust the children first. A more sophisticated

analysis of running time can be given via

infinite ordinal numbers. Thus, simple depth-first or

breadth-first searches do not traverse every infinite

tree, and are not efficient on very large trees.

However, hybrid methods can traverse any

(countable) infinite tree, essentially via a diagonal

argument ("diagonal" – a combination of vertical and

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN

COMPUTER SCIENCE AND APPLICATIONS

ISSN: 0975 – 6728| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE – 02 Page 149

horizontal – corresponds to a combination of depth

and breadth).

The Brute force methods are simplest one and

perform an exhaustive examination of all possible

sequences of moves until goal states are reached [11].

The search through the state space systematically

checks if the current state is a goal state. If a non goal

state is discovered then the current state is expanded

by applying a successor function, generating a new

set of states. The choice of which state to expand is

determined by a search strategy. In a great deal of

occasions, an artificial intelligence application does

not possess an adequate level of knowledge enabling

the choice of the most promising state. Strategies that

can only distinguish between goal states and non-goal

states, without being able to determine if one state is

more promising than another, are referred to as

uninformed search strategies. All brute force

algorithms are the examples of uninformed search

strategies.

Uninformed strategies are only successful for small

problem instances. Typically, most problems search

space is characterized by an exponential growth due

to the mammoth dimensions of the search space it

becomes impractical, both time- and space-wise, to

perform an exhaustive examination. Alternatively, it

is possible to employ additional insights that arise

beyond the definition of the problem. The use of this

information, thus the term informed search strategies,

allows for solutions to be found more efficiently.

Typically, all heuristics algorithms are informed

search strategies and often employ an evaluation

function f(n) which considers a cost function g(n)

alongside a heuristic function h(n). Function g(n) can

be interpreted as representing the cost to reach node n

whilst h(n) represents an estimate on the cost to reach

a leaf node from node n. Traditionally, the node with

the lowest evaluation value is selected for

expansion[11,13,14].

Above discussion has put us in to a concise

understanding of basic aesthetics of tree searches. It

is observed that a tree search is basically a problem-

solving system, which has a knowledge base

containing information about the current state of the

problem in hand, a set of operators for transforming

the knowledge base in some way, a control strategy

or means of deciding which operator to use at any

particular point during the solution of the problem,

and a way of deciding when the problem is solved or

unsolvable [15,16, 18]. To understand this better, let

us consider a program to solve the 8-puzzle. This is a

puzzle where there are 8 numbered tiles that can slide

either sideways or vertically in a 3 by 3 square

framework containing 9 spaces. Only one tile can be

moved at a time into the single unoccupied space in

the framework. In most versions of the puzzle the

tiles are set in some disorganized order at the start

and the problem is to rearrange them into order by

sliding one tile at a time (and not taking them out of

the framework). In a program to solve the 8-puzzle

the knowledge base would contain a representation of

the tiles in the frame and the operators would be the

moves available at the particular point in play. Here a

solution would be a completed sequence of tile

moves that brought the puzzle to the required state.

The control strategy would make sure that in general

it was the tiles which were out of place that were

moved (though of course it might be necessary to

temporarily move tiles that were already in the right

place), because it would be these misplaced tiles that

would necessarily have to be moved as part of any

solution. The amount of search involved in a problem

can be reduced if there is a method of estimating how

effective an operator will be in moving the initial

problem state towards a solution, e.g. a method for

choosing "promising" moves in chess or choosing

which tile to slide in the 8-puzzle. A great deal of

attention has been given to methods of making such

estimates and to the repercussions of such estimates

on control strategy [18]. Occasionally the amount of

search can be reduced very dramatically by

representing the problem in a new way, that is by

looking at it from a different viewpoint .Planning

programs, for example, can usually reduce the

amount of search by first considering only the most

important factors of a problem before going on to

consider the details once the main issues have been

sorted out. In general, the representation of the

problem by the program is determined by the

programmer and even these "hierarchical" planners

have their notion of importance built in. Getting a

program to decide for itself, what counts as important

or determine the best way to view a problem is

extremely difficult. Getting a program to

automatically re-orientate its view of a problem in the

way suggested is, alas, beyond the state of the art

[18]. Many search problems fall into one or other of

two classes depending on the action of the operators

involved. In some problems each operator takes the

problem state or situation and transforms it into a

single new problem state. For example, in the 8-

puzzle each move transforms the arrangement of the

tiles to give a new arrangement. Here the problem is

to find that sequence of operators (moves) which in

total transforms the initial state of the frame of tiles

to a concluding state. This is called State Space

Search. By contrast Problem Reduction involves the

use of operators which break down a complex

problem possibly into several simpler, possibly

independent, sub-problems each of which must be

solved separately. In both State Space approaches

and Problem Reduction there may be a variety of

operators which in principle can apply at any

particular point. Thus in the 8-puzzle (a State Space

example) there is always a choice of at least two tiles

that could be moved at each stage; in undertaking a

mathematical integration (a typical Problem

Reduction example) there typically will be a number

of methods available, each of which will sub-divide

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN

COMPUTER SCIENCE AND APPLICATIONS

ISSN: 0975 – 6728| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE – 02 Page 150

the larger integration problem into smaller ones in a

different way.

The totality of all possible nodes in a problem is

known as its search space. It is important to

distinguish the complete search space for a problem

(i.e. all possible nodes and arcs) from that part of the

space that any particular system explores in its

attempt to find a solution (i.e. those nodes and arcs

actually considered). Usually only a portion of this

space is or can be explored. Some control strategies

for exploring the search space work forward from an

initial state towards a solution. Such methods are also

sometimes called data-directed. An alternative

strategy is to work backward from a goal or final

state towards either soluble sub-problems or the

initial state, respectively. Such a control strategy is

sometimes called goal directed. Problem reduction

systems often work backward in this way. Sometimes

a mixture of both forward and backward strategies is

employed, in the hope that working forward and

backward will successfully meet in the middle. If the

search space is small, systematic (but blind) methods

can be used to explore the whole search space [5,9].

These include depth-first search where, for each new

node encountered, one of the arcs from it is explored.

Only if a dead end is reached does the system return

to the most recent choice-point and try a different arc.

This method is easy to implement but can be

dangerous in that the system may spend a long (or

infinite!) time fruitlessly exploring a hopeless path. A

variation on this method, called bounded depth first

search, sets a limit on the depth to which exploration

is allowed. Breadth-first search is another systematic

but blind method. Here all the arcs from a node are

explored before moving on to explore any arcs from

the new nodes encountered. The advantage of this

method is that it is guaranteed to find a solution

consisting of the shortest path (if one exists) but can

be computationally expensive on memory especially

if each node is bushy, i.e. has many arcs coming out

of it. These systematic but blind methods can be

applied to either state space representations or

problem reduction. Problems differ in the form that

their goal states take. Sometimes the goal state is

known explicitly, such as in the 8- puzzle when all

the tiles are to be in correct numerical order. In these

cases it may be possible to make a comparison

between the current state and the goal state as part of

the process of monitoring progress [9,18].

In other problems, the goal state is not known at the

start, but there is a procedure which will decide

whether or not a given state conforms to the criterion

of being a goal state. An example here might be

successfully solving an equation. Problems also differ

in whether the value of the goal state is the real goal

of the problem or whether it is the path to that goal

which is more important. For instance, route-finding

emphasizes the path where equation-solving

emphasizes the goal itself. Most systems are limited

by either time or space constraints to explore only a

portion of the search space, choosing only certain of

the alternatives available. Such systems depend on

knowledge of the problem domain to decide what

might be promising lines of development. They will

have some measure of the relative merits either of the

different nodes or of the available operators to guide

them. Search which is so guided is called heuristic

search. The methods used in such search are called

heuristics. These terms often carry the connotation of

inexactness and fallibility and are contrasted with

algorithms which are bound to work. Again both

state-space search and problem-reduction search can

be conducted using heuristics [9].

Above discussion, up to some extent, may give the

impression that the search tree of nodes and arcs is a

pre-existing artifact which the program explores.

Occasionally this is true, but in most cases the

problem-solving program explores the space by

"growing" a tree as it goes. Thus it is often

reasonable to picture a problem-solving program as if

it were a driver, without a map but with a notepad,

driving around searching for a particular village in a

maze of country roads. As the search proceeds the

traveler keeps a record of which roads and villages

have already been encountered but can have no

foreknowledge of what lies ahead. By choosing one

node in the search space as a starting point (whether

working forward or backward) and by applying the

available operators, the program grows a tree rather

than a graph [17,18]. That is, each node explored

points back to one node only, the one from which it

was produced. The production of a tree rather than a

graph makes it straightforward to extract a solution

path, traced from the node representing the solution

back to the starting node. Depending on the particular

problem and on the way the program is implemented

this tree may contain the same node at different

points or may not. Re-encountering a node on a

particular solution path during search indicates that

the program has found a loop in the search space. For

example, if this happens while solving the 8-puzzle,

it means that the program has found a set of moves

which takes it to exactly the same position as has

been met before.

3. UNDERSTANDING COMPLEXITY

BEHAVIOR OF TREE SEARCHES

It is evident from above discussion that, in case of

any tree search deployed over a problem; we need to

compute a solution. As there can be many ways to

compute a solution for a given problem, we always

concern about a good solution. The goodness always

has both quantative as well as qualitative aspects. A

good solution is economical in the use of computing

and human resources. Here resources means

execution time- CPU time and memory space-

cache/main/file memory used [2,3]. An important

factor in deciding the quantitative aspect of the

goodness of a tree search program is the efficiency of

its underlying algorithm. We are concerned with the

relationship between the execution time and the

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN

COMPUTER SCIENCE AND APPLICATIONS

ISSN: 0975 – 6728| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE – 02 Page 151

problem size of the input to an algorithm that is with

the increase in execution time with a specified

increase in the size of the input to the problem.

Previous studies by Algorithimicians as well as

computational scientists have categorized algorithms

as tractable (reasonable) and non tractable

(unreasonable).

If the complexity of an algorithm is expressed as

O(pn) , where p(n) is some polynomial of n, then the

algorithm is said to be polynomial time algorithm. It

is generally accepted that the polynomial time

algorithms are tractable. Any algorithm with a time

complexity that can not be bounded by such bounds

is called as a non polynomial time algorithm or non

deterministic polynomial (NP) algorithm. Usually,

for an input size of n, if the complexity is

proportional to n, n
2
,n

3
,n

5
, log (n), n log(n) then such

algorithms are polynomial time algorithms. On the

other hand, if the complexity is proportional to

2
n
,3

n
,n!, then its Non Polynomial algorithm[3,6,15].

In analyzing any given tree search algorithm, there

are two measures of performance that are usually

considered, the worst case behavior and the average

case behavior. If for a given problem of size n , an

algorithm corresponds to maximum complexity

among all problems of size n, then its definitely the

worst case behavior. It’s usually determined by

choosing a set of input conditions that forces the

algorithm to make the least possible progress towards

its final goal at each step. In many practical

applications, it is important to have measures of the

expected complexity of a given algorithm rather than

the worst case behavior. The expected complexity

gives a measure of the algorithm’s working or

behavior averaged over all possible problems of size

n. However, while computing or solving a problem in

a practical implementation, we have to choose

between two or more algorithms. Generally we

would opt for an algorithm that has the lower

expected complexity. This is practically feasible if

we set up a complex and sophisticated combinational

analysis. In case of analysis of average case behavior,

it is assumed that all possible points of termination

are equally distributed (needs assumption of

statistical distribution). Consider a list of n items. If a

search algorithm finds goal at first position, then it is

best case complexity behavior. If the algorithm needs

to analyze all values in the list before termination,

then its worst case behavior . If we do not have best

case or worst case behavior, and it is likely that the

probability that an item could be found at position 1

is 1/n, at position 2 is also 1/n and so on , then its

average case complexity behavior. Here the average

search cost is the sum of all possible search costs

multiplied by their associated probability [3,15].

The analysis of any algorithm is done with respect to

space and time. In space analysis, we are interested in

analyzing how much storage space is used. While

performing timing analysis, we thought of an

estimated time rather than the exact time for

execution . this is usually done by isolating a

particular operation, called an active / dominated

operation which is central to the algorithm and which

is executed frequently. Once the active operation is

isolated, the number of times it is executed is

counted. As long as the active operation occurs at

least as often as the others, the execution time will

increase in some proportion to the number of times

the active operation is executed. The asymptotic

notations are useful in such situations where the

complexity is expressed in terms of active operations.

In our entire work, the complexity analysis is

expressed in terms of asymptotic growth rates which

are the measure of the time taken by an algorithm as

the value of the input measure grows without bounds.

In computing the asymptotic growth rate , we ignore

multiplicative constant in the complexity function

and focus on the rate it self [3,15] . For the purpose

of comparing asymptotic growth rates the notations

‘O’(for “order”) that is “Big Oh”, ‘ Θ’ that is Big

Theta notation and ‘Ω ‘ Big Omega notations are

used. Their definitions and properties are expressed

in Appendix-1

While carrying out research , we felt that, there are

situations where we have to choose between the CPU

time the program uses and the primary / secondary

memory it will occupy. The choice depends upon the

implementation criteria. If storage space is available

and otherwise unused, it is preferable to use

algorithms that require more space and less time as

compared to other algorithms solving the same

problem. If space is not available, then time may

have to be sacrificed. Further, it is observed that a

non recursive algorithm will execute more efficiently

in terms of space and time than a recursive one[3,4].

This is because the overhead involved in entering and

exiting a block is avoided in the non recursive code

.In a recursive algorithm, a number of local and

temporary variables are to be tacked and unstacked

on the stack which consumes both time and space.

Beside space and time analysis of tree searching

algorithms, we also stick to modularity, scalability,

correctness, maintainability , simplicity and graceful

degradation aspects of performance of algorithms.

These factor, indeed were the criteria to judge

whether one algorithm is better than second one or

not? Some considerations to user friendliness,

extensibility, concurrency behavior, distributedness,

security , hardware- software compliantness were

also given .

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN

COMPUTER SCIENCE AND APPLICATIONS

ISSN: 0975 – 6728| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE – 02 Page 152

Complexity Picture of Selected Tree Search Methods

Name
Time

Complexity

Space

Complexity
Optimal? Comment

BFS O (b
d
) O (b

d
) May be

Optimal only when the optimal path is the

shortest

DFS O (b
d
) O (d) No Blind Alley trapping

A* --- --- Yes Optimal

IDA* --- --- Yes Optimal

Hill

Climbing
Width^Depth Width^Depth Yes Optimal

Table 1 : Complexity Picture of Selected Tree Search Methods

We do both theoretical and empirical complexity

analysis of tree searching algorithms. Theoretical

analysis is helpful for understanding asymptotic

behavior of an algorithm. The Empirical analysis is

important in comparing two algorithms which may or

may not have same order of complexity and then to

decide when would one use one and not other. A

theoretician, Baase [14,15] lists five aspects to

consider in the process of analyzing an algorithm.

These are also applicable to tree searching

algorithms. These aspects are Correctness, Work

done, Space used, Simplicity or clarity, Optimality.

Another Algorithmician Sedgwick [9,14,15] devotes

a chapter to the “Implementation of Algorithms”.

Here he makes the claim that “it is unfortunately all

too often the case that mathematical analysis can

shed very little light on how well a given algorithm

can be expected to perform in a given situation”. He

stresses the importance of empirical analysis in this

case. He also advocates the use of empirical analysis

in comparing two algorithms to solve the same

problem. Brunskill and Turner [9,15] give a list of

some things that the execution time of a given

program will depend on the CPU, the compiler, the

programming language, the way the program is

constructed, time for disk accesses and other IO

,whether the system is single or multitasking, etc .To

make this real, this study has insisted on

implementation of five selected algorithms and

conducting rigorous analysis as pointed out in above

analysis context.

This requires experimentally verifying the

complexity behavior of selected tree searching

algorithms and then using their experimental data to

compare the algorithms. In order to do proper

empirical analysis to verify and expand on the

theoretical analysis of an algorithm we need to

understand the theoretical analysis , decide on what

should be measured, decide on appropriate hardware

,decide on an appropriate implementation language,

decide on appropriate data structures, implement the

algorithms ,implement some form of timing device,

create the input data sets necessary to produce the

measurements we need, measure the performance of

the algorithm on the different input data sets created

to meet our aim, interpret the results ,relate the results

to the theoretical analysis.

Few of these tasks were trivial. To deal with them

adequately, knowledge and understanding of a

number of theoretical concepts/areas are required –

asymptotic notation; probability theory regarding tree

searching, tree architecture, tree specific data

structures and tree representation; and experimental

statistics, etc[17] .By carrying out this research , our

plan was to

1) better understand the trees

2) better understand tree searching

algorithmic ideas in practice

3) check for accuracy or correctness

in standardized case

4) access the quality of tree search

algorithms , and

5) comparing the actual performance

of competing algorithms for some tractable ,

constraint satisfaction problems, etc

4. CONCLUSION
As concluding remarks, we have observed that, for

any problem that can be represented as a problem

space, search techniques can be used to solve it. The

price of this generality is exponential complexity,

with the result that many problems of practical

interest are solvable in principal with tree search. The

limitations of computational capacity prevent them

from being solved with expected complexities in

practice. The increasing diversity in computing

platforms motivates consideration of multi-processor

environment. In such circumstances, we can also

view the traditional tree search algorithms through a

new perspective.

5. REFERENCES

1. Constructing Good Partitioning Trees ,

Bruce Naylor, AT&T Bell Laboratories, Murray Hill,

NJ, Lecture notes,1990

2. Artificial Intelligence and its Teaching,

Dr.Gergely Kovasznai & Dr.Gabor Kusper , Institute

of mathematics and Informatics ,Lecture notes

published by National Development

Agency,Hungery,1990

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN

COMPUTER SCIENCE AND APPLICATIONS

ISSN: 0975 – 6728| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE – 02 Page 153

3. Design and Analysis of Algorithms, Aarag

Himanshu Dave et al, Pearson Education ,First

edition,2008

4. D. Aldous. The continuum random tree I, I,

IIII: An overview. In Stochastic Analysis ,.

Cambridge Univ. Press, Cambridge 1991.

5. K.B. Athreya and P.E. Ney. Branching

Processes. Springer, Berlin 1972.

6. A. Bagchi and A.K. Pal. Asymptotic

normality in the generalized Polya Eggenbergerurn

model with an application to computer data

structures. SIAMJ, Algebraic Discrete Methods 6 (3),

1985.

7. B. Chauvin, T. Klein, J.-F. Marckert and A.

Rouault. Martingales and profile of binary search

trees. Electron. J. Probab. 10, 2005.

8. B. Chauvin and N. Pouyanne, m-ary search

trees when m =27: a strong asymptotic for the space

requirements. Random Structural Algebra, 24 (2),

2004.

9. Cormen, T. H., Leiserson C. E., Rivest R. L.

& Stein C, Introduction to Algorithms (Second

Edition), MIT Press/McGraw-Hill,2008

10. Genesis of DB Routing Algorithm in

Unicasting Networks, S.Anuradha, G.Raghu Ram, et

al ,ICGST-CNIR Journal, Volume 9, Issue 1, July

2009

11. Performance of linear-space search

algorithms, R.E. Korf, Weixiong Zhang, Artificial

Intelligence, Vol. 79, No. 2, Dec. 1995, pp. 241-292.

12. Random Generation of Trees: Alonso and

R.Schott, Kluwer, Boston ,1995.

13. Data structures and Algorithms, A Aho, J.

Hopcroft and J. Ullman, Addison Wesley, Reading,

MD, 2005

14. Fundamentals of computer algorithms, Ellis

Horowitz and Sartaj Sahani, Computer Science

Press, Rockville, MD, 2008

15. The Art of Computer programming,

Volume-1,2,3 , fundamentals Of Algorithm,

D.E.Kunth ,Addison Wesley, Reading, MA, 2008

16. Algorithms, R. Sedgewick, Addison

Wesley, Reading, MA,2003

17. Constructing evolutionary trees : Algorithms

& Complexity, Anna Ostlin, Department of

Computer Science, Lund University,Sweeden,2001

18. Artificial Intelligence, Strategies,

Applications and Models through Search,

Christopher Thornton, Benedict du Boulay,Amacon

Publications,New York,2e,1998

