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ABSTRACT : Searching trees is a most interesting application of Artificial Intelligence. Over the period of 

time, many innovative methods have been evolved to better search trees with respect to computational 

complexities. In this paper, we have tried to sketch fundamental aspects,  pathological point of view to trees as 

well as their searching processes. We are hopeful that our contribution will be helpful for the researches 

working on tree searches. 
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1. INTRODUCTION  

Representation of values in any computational 

domain is fundamentally important. This 

representation is mainly carried out by using data 

structures. For the domain of geometric computation, 

a few predominate representations have emerged. 

These include discrete space representations like 

arrays of lattice points, topological representations 

like boundary-representations, parametric surfaces, 

simplified decompositions and trees [1]. In 

computational paradigms such as algorithm analysis 

and complexity theories, trees are widely used data 

structures that simulate hierarchical structures with a 

set of linked nodes [2]. Trees find occurrence in 

Discrete Mathematics, Population Studies, Graph 

theories, Network Design Theories, Compilation & 

Parsing approaches, Optimization Theories, etc 

[1,6,7,12]. Beside these, trees are widely used for 

partitioning as every node/ element in them work as a 

decision making point. Trees are powerful tool for 

organizing data objects based on keys. They are 

equally useful for organizing multiple data objects in 

terms of hierarchical relationships. A tree can be 

defined recursively as a collection of nodes starting at 

a root node, where each node is a data structure 

consisting of a value, together with a list of nodes, 

called children nodes, with the constraints that no 

node is duplicated. When we examine a non-leaf 

node, we see that the node has trees growing 

underneath it, and we say that the node has children 

sub trees. A tree has many levels depicting sub trees, 

we can think of a family tree where the children are 

grouped under their parents in the tree. 

Tree structures have made an excellent alternative to 

arrays, especially when the data stored within them is 

keyed or has internal structure that allows one 

element to be related to, or saved within 

another[9,11].This highlights their usefulness for 

complexity reduction and optimization processes 

[10]. Trees can hold objects that are sorted by their 

keys. For example, the nodes are ordered so that all 

keys in a node's left subtree are less than the key of 

the object at the node, and all keys in a node's right 

subtree are greater than the key of the object at the 

node. Such arrangement drastically reduces searching 

time and related time complexity. Trees can also hold 

objects that are located by keys that are sequences 

[7]. Trees can represent a structured object, such as a 

house that must be explored by a robot or a human 

player in an adventure game, along a specific path 

from the source. Trees are also useful to represent 

phrase structure of sentences, which is crucial to 

language processing programs / parse trees.  

A tree can be defined abstractly as an ordered tree, 

with a value assigned to each node. If in a tree, an 

ordering of the nodes at each level is prescribed then 

such tree is called as an ordered tree. If we delete the 

root and its edges connecting the node at level 1, we 

obtain a set of disjoint trees. A set of disjoint trees is 

called a forest. Any node of a tree is the root of some 

subtree. Therefore, sub trees are seen immediately 

below a node form a forest. The tree can be also 

defined in a recursive fashion. According to this 

definition, a tree contains one or more nodes such 

that one of the nodes is called a root while all the 

other nodes are partitioned into a finite number of 

trees called sub trees. It can be defined as a restricted 

graph. This restriction imposed upon the graph yields 

a general tree. Each general tree can be represented 

by an equivalent binary tree. A tree can be analyzed 

mathematically as a whole. If represented as a data 

structure, it is usually represented and worked with 

separately by node rather than as a list of nodes and 

adjacency list of edges between nodes. Indeed, given 

a list of nodes, and for each node a list of its children, 

one cannot tell if this structure is a tree or not without 

analyzing its global structure and checking that it is 

in fact topologically a tree . In terms of references, a 

tree is a special kind of directed graph, with a global 

constraint on its topology namely no loops as an 

undirected graph. Trees have built in recursive 

aspects .Recursively, a tree is defined as a node (the 

root), which itself consists of a value (of some data 

type, possibly empty), together with a list of nodes 
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(possibly empty). Mathematically, tree is viewed as a 

whole, a tree data structure is an ordered tree 

generally with values attached to each node [2,3,9]. 

Concretely, it is: A  rooted with the "away from root" 

direction meaning: 

1. A directed graph , whose 

underlying undirected graph is a tree (any two 

vertices are connected by exactly one simple path), 

2. With a distinguished root (one vertex is 

designated as the root), which determines the 

direction on the edges (arrows point away from the 

root; given an edge, the node that the edge points 

from is called the parent and the node that the edge 

points to is called the child), together with an 

ordering on the child nodes of a given node, and a 

value (of some data type) at each node. 

3. There is exactly one path connecting any 

two nodes in a tree 

4. A tree with n nodes has n-1 edges. 

5. A full binary tree with n internal nodes has 

n+ 1 external node. 

6. The height of a complete binary tree with n 

internal nodes is about log2n 

 

Above discussion implies that, we can organize the 

data so that items of information are related by the 

branches. Thus a tree is a finite set of one or more 

nodes such that: 

1. There is a specially designated node called 

the root. 

2. The remaining nodes are partitioned into n > 

0 disjoint sets T1,…, Tn, where each of these sets is a 

tree.  We call T1,…, Tn the sub trees of the root. 

3. Often trees have a fixed , bounded  

branching factor  particularly always having number 

of  child nodes  that determines whether tree is binary 

( two children), ternary ( three children) or a m-ary 

tree[8] (possibly many non-empty child nodes) 

The parent-child relationship can be extended 

naturally to ancestors and descendants. Informally, 

the ancestors of a node are found by following the 

unique path from the node to its parent, to its parent’s 

parent, and so on. Strictly speaking, a node is also its 

own ancestor. The descendant relationship is the 

inverse of the ancestor relationship, just as the parent 

and child relationships are inverses of each other. The 

length of the path is k −1, one less than the number of 

nodes on the path. Note that a path may consist of a 

single node (if k = 1), in which case the length of the 

path is 0. 

 

 
 

Figure 1 : General Trees with root node and other 

three nodes a,b,c 

 

Above figure shows different forms of a tree with a 

root node and other three nodes a,b,c . From figure, 

we can say that a tree is associated with following 

terminology,  

1. Root of the tree: The top node of the tree 

that is not a subtree to other node, and has two 

children of subtrees. 

2. Node: It is stands for the item of information 

and the branches to other nodes. 

3. The degree of a node: It is the number of 

subtrees of the node. 

4. The degree of a tree: It is the maximum 

degree of the nodes in the tree 

5. The parent node: a node that has subtrees is 

the parent of the roots of the subtrees 

6. The child node: a node that is the roots of 

the subtrees are the children of the node 

7. The Level of the tree: We define the level of 

a node by initially letting the root be at level one 

8. The depth of a tree: It also called height of a 

tree.  It is the maximum level of any node in the tree 

2. DISCUSSIONS AND ANALYSIS OF 

TREE SEARCHING METHODS 

Searching is frequently associated with trees.  Such 

search is called Tree Search, since long has been a 

topic of interest in Artificial Intelligence [9,11,13]. 

There are two different strategies for searching a 

solution space. One of these strategies is data-driven. 

A data-driven strategy starts at the root and traverses 

the branches of the tree until it finds the solution. The 

other is a goal-driven strategy that starts at the 

solution and then tries to find a path back to the 

starting point. The goal-driven strategy is also 

commonly called backtracking. The basic tree search 

algorithms found in the literature are either data-

driven strategies or goal driven strategies. 

Irrespective of the strategy the algorithm uses, it is 

witnessed that the traversing operation is carried out 

on trees to find the solution or goal. A basic 

requirement for tree searching is invoking a traversal 

process that visits every node to cross check required 

goal. Compared to linear data structures like linked 

lists  or one dimensional arrays, which have a 

canonical method of traversal namely in linear order, 

tree structures can be traversed in many different 

ways. For a binary tree, starting at the root, there are 

three main steps that can be performed and the order 

in which they are performed defines the traversal 

type. These steps are: performing an action on the 

current node, traversing to the left / right child node, 

and then traversing to the right/ left child node. 

Traversing a tree involves iterating / looping over all 

nodes in some manner[9]. Because from a given node 

there is more than one possible next node as it is not 

a linear data structure, then, assuming sequential 

computation, some nodes must be deferred – stored 

in some way for later visiting. This is often done via 

a stack (LIFO) or queue (FIFO). As a tree is a self-

referential and recursively defined data structure, 
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traversal can naturally be described by recursion  

where  the deferred nodes are stored implicitly .While 

traversing, we need no memory other than the current 

and the previous node/state. Such traversal 

algorithms are  very simple: 

1. If the previous node is this node’s parent 

node, descend to the left child node. 

2. If the previous node is this node’s left child 

node, descend to the right child node. 

3. If the previous node is this node’s right child 

node, ascend to the parent node. 

Traversal is complete when an attempt to ascend to 

the parent node fails because there is no parent. 

Literature shows that the above three traversals are 

named as Pre order, Post order and In order 

traversals[9]. The name given to above particular 

style of traversal comes from the order in which 

nodes are visited. Technically, these three belongs to 

one of the simple way to intervene the tree space.  

Thus we need to study traversal techniques if we 

want to search something from trees. Further 

searching in a tree is far quick than searching in a 

linear structure. This discussion highlights that the 

search perform better when data is structured as a 

tree. Trees, and particularly binary trees, appear 

frequently in the classification literature [11]. Many 

applications, such those found in combinatorial 

optimization, graph searching, Network structure 

Analysis, can be addressed by searching through a 

large tree of possible solutions. Since search 

problems reflects fundamental task that must be 

tackled quite frequently, researchers have attempted 

to develop algorithms efficient in terms of Time or 

Space Complexities [8,9]. For example, in Artificial 

Intelligence there has been extensive research into 

search algorithms for problems such as propositional 

satisfability and constraint satisfaction problems. 

Tree search methods are  categorized  as Informed 

,Uninformed, Exhaustive, Brute force, Uniform, 

Complete ,Optimal , Local, Backtracking depending 

upon the  style of searching , amount of time spent in  

searching, does or does not take into account the 

specific nature of the problem, guarantee to find the 

goal, etc[2,4] . 

The most common categories are Brute Force Search 

methods and Heuristic Search methods [2,11]. These 

methods are associated with specific data structures 

and follow a similar searching pattern. The search 

begins by expanding the initial node i.e., by 

generating successors. At each later step, one of the 

previously generated nodes is expanded and the 

process continues until a goal node is found. Both 

these categories differ in the way “How the   

generated node is chosen for expansion?” The 

Heuristic Search Algorithms take advantage of the 

property of maintaining current minimum and 

eliminating from the search process, the sub trees 

whose nodes exceed in cost and value of current 

minimum. They need additional domain specific 

knowledge to operate.  A*.  AO*, Best-First Search, 

etc are the few examples of Heuristic Search 

methods. On other hand, Brute Force Search 

Algorithms are useful when no additional 

information is available. These are blind in the sense 

that they go through all possible answers to the 

problem and chose the best one. Hence they are weak 

and less efficient. Depth First Search (DFS) and 

Breadth First Search (BFS) are the two most widely 

used Brute Force Search methods [2]. No doubt, 

there exits many ways of searching, technically, there 

are only two ways to penetrate into trees does one go 

down first (depth-first: first child, then grandchild 

before second child) or across first (breadth-first: first 

child, then second child before grandchildren). 

Depth-first traversal is further classified by position 

of the root element with regard to the left and right 

nodes. Imagine that the left and right nodes are 

constant in space, then the root node could be placed 

to the left of the left node (pre-order), between the 

left and right node (in-order), or to the right of the 

right node (post-order). There is no equivalent 

variation in breadth-first traversal – given an ordering 

of children; "breadth-first" is unambiguous. While 

traversal is usually done for trees with a finite 

number of nodes and hence finite depth and 

finite branching factor, it can also be done for infinite 

trees. This is of particular interest in functional 

programming, as infinite data structures can often be 

easily defined and worked with, though they are not 

strictly evaluated, as this would take infinite time. 

Some finite trees are too large to represent explicitly, 

such as the game tree for chess and so it is useful to 

analyze them as if they were infinite. For infinite 

trees, simple algorithms often fail. For example, 

given a binary tree of infinite depth, a depth-first 

traversal will go down one side (by convention the 

left side) of the tree, never visiting the rest, and 

indeed if in-order or post-order will never 

visit any nodes, as it has not reached a leaf (and in 

fact never will). By contrast, a breadth-first (level-

order) traversal will traverse a binary tree of infinite 

depth without problem, and indeed will traverse any 

tree with bounded branching factor [5]. On the other 

hand, given a tree of depth 2, where the root node has 

infinitely many children, and each of these children 

has two children, a depth-first traversal will visit all 

nodes, as once it exhausts the grandchildren (children 

of children of one node), it will move on to the next 

(assuming it is not post-order, in which case it never 

reaches the root). By contrast, a breadth-first traversal 

will never reach the grandchildren, as it seeks to 

exhaust the children first. A more sophisticated 

analysis of running time can be given via 

infinite ordinal numbers. Thus, simple depth-first or 

breadth-first searches do not traverse every infinite 

tree, and are not efficient on very large trees. 

However, hybrid methods can traverse any 

(countable) infinite tree, essentially via a diagonal 

argument ("diagonal" – a combination of vertical and 
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horizontal – corresponds to a combination of depth 

and breadth).  

The Brute force methods are simplest one and 

perform an exhaustive examination of all possible 

sequences of moves until goal states are reached [11]. 

The search through the state space systematically 

checks if the current state is a goal state. If a non goal 

state is discovered then the current state is expanded 

by applying a successor function, generating a new 

set of states. The choice of which state to expand is 

determined by a search strategy. In a great deal of 

occasions, an artificial intelligence application does 

not possess an adequate level of knowledge enabling 

the choice of the most promising state. Strategies that 

can only distinguish between goal states and non-goal 

states, without being able to determine if one state is 

more promising than another, are referred to as 

uninformed search strategies. All brute force 

algorithms are the examples of uninformed search 

strategies.  

Uninformed strategies are only successful for small 

problem instances. Typically, most problems search 

space is characterized by an exponential growth due 

to the mammoth dimensions of the search space it 

becomes impractical, both time- and space-wise, to 

perform an exhaustive examination. Alternatively, it 

is possible to employ additional insights that arise 

beyond the definition of the problem. The use of this 

information, thus the term informed search strategies, 

allows for solutions to be found more efficiently. 

Typically, all heuristics algorithms are informed 

search strategies  and often employ an evaluation 

function f(n) which considers a cost function g(n) 

alongside a heuristic function h(n). Function g(n) can 

be interpreted as representing the cost to reach node n 

whilst h(n) represents an estimate on the cost to reach 

a leaf node from node n. Traditionally, the node with 

the lowest evaluation value is selected for 

expansion[11,13,14].  

Above discussion has put us in to a concise 

understanding of basic aesthetics of tree searches. It 

is observed that a tree search is basically a problem-

solving system, which has a knowledge base 

containing information about the current state of the 

problem in hand, a set of operators for transforming 

the knowledge base in some way, a control strategy 

or means of deciding which operator to use at any 

particular point during the solution of the problem, 

and a way of deciding when the problem is solved or 

unsolvable [15,16, 18]. To understand this better, let 

us consider a program to solve the 8-puzzle. This is a 

puzzle where there are 8 numbered tiles that can slide 

either sideways or vertically in a 3 by 3 square 

framework containing 9 spaces. Only one tile can be 

moved at a time into the single unoccupied space in 

the framework. In most versions of the puzzle the 

tiles are set in some disorganized order at the start 

and the problem is to rearrange them into order by 

sliding one tile at a time (and not taking them out of 

the framework). In a program to solve the 8-puzzle 

the knowledge base would contain a representation of 

the tiles in the frame and the operators would be the 

moves available at the particular point in play. Here a 

solution would be a completed sequence of tile 

moves that brought the puzzle to the required state. 

The control strategy would make sure that in general 

it was the tiles which were out of place that were 

moved (though of course it might be necessary to 

temporarily move tiles that were already in the right 

place), because it would be these misplaced tiles that 

would necessarily have to be moved as part of any 

solution. The amount of search involved in a problem 

can be reduced if there is a method of estimating how 

effective an operator will be in moving the initial 

problem state towards a solution, e.g. a method for 

choosing "promising" moves in chess or choosing 

which tile to slide in the 8-puzzle. A great deal of 

attention has been given to methods of making such 

estimates and to the repercussions of such estimates 

on control strategy [18]. Occasionally the amount of 

search can be reduced very dramatically by 

representing the problem in a new way, that is by 

looking at it from a different viewpoint .Planning 

programs, for example, can usually reduce the 

amount of search by first considering only the most 

important factors of a problem before going on to 

consider the details once the main issues have been 

sorted out. In general, the representation of the 

problem by the program is determined by the 

programmer and even these "hierarchical" planners 

have their notion of importance built in. Getting a 

program to decide for itself, what counts as important 

or determine the best way to view a problem is 

extremely difficult. Getting a program to 

automatically re-orientate its view of a problem in the 

way suggested is, alas, beyond the state of the art 

[18]. Many search problems fall into one or other of 

two classes depending on the action of the operators 

involved. In some problems each operator takes the 

problem state or situation and transforms it into a 

single new problem state. For example, in the 8-

puzzle each move transforms the arrangement of the 

tiles to give a new arrangement. Here the problem is 

to find that sequence of operators (moves) which in 

total transforms the initial state of the frame of tiles 

to a concluding state. This is called State Space 

Search. By contrast Problem Reduction involves the 

use of operators which break down a complex 

problem possibly into several simpler, possibly 

independent, sub-problems each of which must be 

solved separately. In both State Space approaches 

and Problem Reduction there may be a variety of 

operators which in principle can apply at any 

particular point. Thus in the 8-puzzle (a State Space 

example) there is always a choice of at least two tiles 

that could be moved at each stage; in undertaking a 

mathematical integration (a typical Problem 

Reduction example) there typically will be a number 

of methods available, each of which will sub-divide 
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the larger integration problem into smaller ones in a 

different way.  

The totality of all possible nodes in a problem is 

known as its search space. It is important to 

distinguish the complete search space for a problem 

(i.e. all possible nodes and arcs) from that part of the 

space that any particular system explores in its 

attempt to find a solution (i.e. those nodes and arcs 

actually considered). Usually only a portion of this 

space is or can be explored. Some control strategies 

for exploring the search space work forward from an 

initial state towards a solution. Such methods are also 

sometimes called data-directed. An alternative 

strategy is to work backward from a goal or final 

state towards either soluble sub-problems or the 

initial state, respectively. Such a control strategy is 

sometimes called goal directed. Problem reduction 

systems often work backward in this way. Sometimes 

a mixture of both forward and backward strategies is 

employed, in the hope that working forward and 

backward will successfully meet in the middle. If the 

search space is small, systematic (but blind) methods 

can be used to explore the whole search space [5,9]. 

These include depth-first search where, for each new 

node encountered, one of the arcs from it is explored. 

Only if a dead end is reached does the system return 

to the most recent choice-point and try a different arc. 

This method is easy to implement but can be 

dangerous in that the system may spend a long (or 

infinite!) time fruitlessly exploring a hopeless path. A 

variation on this method, called bounded depth first 

search, sets a limit on the depth to which exploration 

is allowed. Breadth-first search is another systematic 

but blind method. Here all the arcs from a node are 

explored before moving on to explore any arcs from 

the new nodes encountered. The advantage of this 

method is that it is guaranteed to find a solution 

consisting of the shortest path (if one exists) but can 

be computationally expensive on memory especially 

if each node is bushy, i.e. has many arcs coming out 

of it. These systematic but blind methods can be 

applied to either state space representations or 

problem reduction. Problems differ in the form that 

their goal states take. Sometimes the goal state is 

known explicitly, such as in the 8- puzzle when all 

the tiles are to be in correct numerical order. In these 

cases it may be possible to make a comparison 

between the current state and the goal state as part of 

the process of monitoring progress [9,18].  

In other problems, the goal state is not known at the 

start, but there is a procedure which will decide 

whether or not a given state conforms to the criterion 

of being a goal state. An example here might be 

successfully solving an equation. Problems also differ 

in whether the value of the goal state is the real goal 

of the problem or whether it is the path to that goal 

which is more important. For instance, route-finding 

emphasizes the path where equation-solving 

emphasizes the goal itself. Most systems are limited 

by either time or space constraints to explore only a 

portion of the search space, choosing only certain of 

the alternatives available. Such systems depend on 

knowledge of the problem domain to decide what 

might be promising lines of development. They will 

have some measure of the relative merits either of the 

different nodes or of the available operators to guide 

them. Search which is so guided is called heuristic 

search. The methods used in such search are called 

heuristics. These terms often carry the connotation of 

inexactness and fallibility and are contrasted with 

algorithms which are bound to work. Again both 

state-space search and problem-reduction search can 

be conducted using heuristics [9]. 

Above discussion, up to some extent, may give the 

impression that the search tree of nodes and arcs is a 

pre-existing artifact which the program explores. 

Occasionally this is true, but in most cases the 

problem-solving program explores the space by 

"growing" a tree as it goes. Thus it is often 

reasonable to picture a problem-solving program as if 

it were a driver, without a map but with a notepad, 

driving around searching for a particular village in a 

maze of country roads. As the search proceeds the 

traveler keeps a record of which roads and villages 

have already been encountered but can have no 

foreknowledge of what lies ahead. By choosing one 

node in the search space as a starting point (whether 

working forward or backward) and by applying the 

available operators, the program grows a tree rather 

than a graph [17,18]. That is, each node explored 

points back to one node only, the one from which it 

was produced. The production of a tree rather than a 

graph makes it straightforward to extract a solution 

path, traced from the node representing the solution 

back to the starting node. Depending on the particular 

problem and on the way the program is implemented 

this tree may contain the same node at different 

points or may not. Re-encountering a node on a 

particular solution path during search indicates that 

the program has found a loop in the search space. For 

example, if this happens while solving the 8-puzzle, 

it means that the program has found a set of moves 

which takes it to exactly the same position as has 

been met before.  

3. UNDERSTANDING COMPLEXITY 

BEHAVIOR OF TREE SEARCHES  

It is evident from above discussion that, in case of 

any tree search deployed over a problem; we need to 

compute a solution. As there can be many ways to 

compute a solution for a given problem, we always 

concern about a good solution. The goodness always 

has both quantative as well as qualitative aspects. A 

good solution is economical in the use of computing 

and human resources. Here resources means 

execution time- CPU time and memory space- 

cache/main/file memory used [2,3]. An important 

factor in deciding the quantitative aspect of the 

goodness of a tree search program is the efficiency of 

its underlying algorithm. We are concerned with the 

relationship between the execution time and the 
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problem size of the input to an algorithm that is with 

the increase in execution time with a specified 

increase in the size of the input to the problem. 

Previous studies by Algorithimicians as well as 

computational scientists have categorized algorithms 

as tractable (reasonable) and non tractable 

(unreasonable).  

If the complexity of an algorithm is expressed as 

O(pn) , where p(n) is some polynomial of n, then the 

algorithm is said to be polynomial time algorithm. It 

is generally accepted that the polynomial time 

algorithms are tractable. Any algorithm with a time 

complexity that can not be bounded by such bounds 

is called as a non polynomial time algorithm or non 

deterministic polynomial (NP) algorithm. Usually, 

for an input size of n, if the complexity is 

proportional to n, n
2
,n

3
,n

5
, log (n), n log(n) then such 

algorithms are polynomial time algorithms. On the 

other hand, if the complexity is proportional to 

2
n
,3

n
,n!, then its Non Polynomial algorithm[3,6,15]. 

In analyzing any given tree search algorithm, there 

are two measures of performance that are usually 

considered, the worst case behavior and the average 

case behavior. If for a given problem of size n , an 

algorithm corresponds to maximum complexity 

among all problems of size n, then its definitely the 

worst case behavior. It’s usually determined by 

choosing a set of input conditions that forces the 

algorithm to make the least possible progress towards 

its final goal at each step.  In many practical 

applications, it is important to have measures of the 

expected complexity of a given algorithm rather than 

the worst case behavior. The expected complexity 

gives a measure of the algorithm’s working or 

behavior averaged over all possible problems of size 

n. However, while computing or solving a problem in 

a practical implementation, we have to choose 

between two or more algorithms. Generally we 

would opt for an algorithm that has the lower 

expected complexity. This is practically feasible if 

we set up a complex and sophisticated combinational 

analysis. In case of analysis of average case behavior, 

it is assumed that all possible points of termination 

are equally distributed (needs assumption of 

statistical distribution). Consider a list of n items. If a 

search algorithm finds goal at first position, then it is 

best case complexity behavior. If the algorithm needs 

to analyze all values in the list before termination, 

then its worst case behavior . If we do not have best 

case or worst case behavior, and it is  likely that the 

probability that an item could be found at position 1  

is 1/n, at position 2 is also 1/n and so on , then its 

average case complexity behavior. Here the average 

search cost is the sum of all possible search costs 

multiplied by their associated probability [3,15]. 

The analysis of any algorithm is done with respect to 

space and time. In space analysis, we are interested in 

analyzing how much storage space is used. While 

performing timing analysis, we thought of an 

estimated time rather than the exact time for 

execution . this is usually done by isolating a 

particular operation, called an active / dominated 

operation which is central to the algorithm and which 

is executed frequently. Once the active operation is 

isolated, the number of times it is executed is 

counted. As long as the active operation occurs at 

least as often as the others, the execution time will 

increase in some proportion to the number of times 

the active operation is executed. The asymptotic 

notations are useful in such situations where the 

complexity is expressed in terms of active operations. 

In our entire work, the complexity analysis is 

expressed in terms of asymptotic growth rates which 

are the measure of the time taken by an algorithm as 

the value of the input measure grows without bounds. 

In computing the asymptotic growth rate , we ignore 

multiplicative constant in the complexity function 

and focus on the rate it self [3,15] . For the purpose 

of comparing asymptotic growth rates the notations 

‘O’( for “order”) that is “Big Oh”, ‘ Θ’ that is Big 

Theta notation and   ‘Ω ‘ Big Omega notations are 

used. Their definitions and properties are expressed 

in Appendix-1  

While carrying out research , we felt that, there are 

situations where we have to choose between the CPU 

time the program uses and the primary / secondary 

memory it will occupy. The choice depends upon the 

implementation criteria. If storage space is available 

and otherwise unused, it is preferable to use 

algorithms that require more space and less time as 

compared to other algorithms solving the same 

problem. If space is not available, then time may 

have to be sacrificed. Further, it is observed that a 

non recursive algorithm will execute more efficiently 

in terms of space and time than a recursive one[3,4]. 

This is because the overhead involved in entering and 

exiting a block is avoided in the non recursive code 

.In a recursive algorithm, a number of local and 

temporary variables are to be tacked and unstacked 

on the stack which consumes both time and space. 

Beside space and time analysis of  tree searching 

algorithms, we also stick to modularity, scalability, 

correctness, maintainability , simplicity and graceful 

degradation aspects of performance of algorithms. 

These factor, indeed were the criteria to judge 

whether one algorithm is better than second one or 

not? Some considerations to user friendliness, 

extensibility, concurrency behavior, distributedness, 

security , hardware- software compliantness  were 

also given .  
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Complexity Picture of Selected Tree  Search Methods 

Name 
Time 

Complexity 

Space 

Complexity 
Optimal? Comment   

BFS O (b
d
) O (b

d
) May be 

Optimal only when the optimal path is the 

shortest 

DFS O (b
d
) O (d) No Blind Alley trapping  

A* --- --- Yes Optimal 

IDA* --- --- Yes Optimal 

Hill 

Climbing   
Width^Depth Width^Depth Yes Optimal 

 

Table 1 :  Complexity Picture of Selected Tree  Search Methods 

 

We do both theoretical and empirical complexity 

analysis of tree searching algorithms. Theoretical 

analysis is helpful for understanding asymptotic 

behavior of an algorithm. The Empirical analysis is 

important in comparing two algorithms which may or 

may not have same order of complexity and then to 

decide when would one use one and not other.  A 

theoretician, Baase [14,15] lists five aspects to 

consider in the process of analyzing an algorithm. 

These are also applicable to tree searching 

algorithms. These aspects are Correctness, Work 

done, Space used, Simplicity or clarity, Optimality. 

Another Algorithmician Sedgwick [9,14,15] devotes 

a chapter to the “Implementation of Algorithms”. 

Here he makes the claim that “it is unfortunately all 

too often the case that mathematical analysis can 

shed very little light on how well a given algorithm 

can be expected to perform in a given situation”. He 

stresses the importance of empirical analysis in this 

case. He also advocates the use of empirical analysis 

in comparing two algorithms to solve the same 

problem. Brunskill and Turner [9,15] give a list of 

some things that the execution time of a given 

program will depend on the CPU, the compiler, the 

programming language, the way the program is 

constructed, time for disk accesses and other IO 

,whether the system is single or multitasking, etc .To 

make this real, this study  has insisted on 

implementation of five selected algorithms and 

conducting rigorous analysis as pointed out in above  

analysis context.  

This requires experimentally verifying the 

complexity behavior of selected tree searching 

algorithms and then using their experimental data to 

compare the algorithms. In order to do proper 

empirical analysis to verify and expand on the 

theoretical analysis of an algorithm we need to 

understand the theoretical analysis , decide on what 

should be measured, decide on appropriate hardware 

,decide on an appropriate implementation language, 

decide on appropriate data structures, implement the 

algorithms ,implement some form of timing device, 

create the input data sets necessary to produce the 

measurements we need, measure the performance of 

the algorithm on the different input data sets created 

to meet our aim, interpret the results ,relate the results 

to the theoretical analysis.  

 

Few of these tasks were trivial. To deal with them 

adequately, knowledge and understanding of a 

number of theoretical concepts/areas are required – 

asymptotic notation; probability theory regarding tree 

searching,  tree architecture,  tree specific data 

structures and tree representation; and experimental 

statistics, etc[17] .By carrying out this research , our 

plan was to  

1) better understand the trees 

2) better understand  tree searching 

algorithmic ideas in practice  

3) check for accuracy or correctness 

in standardized case 

4) access the quality of  tree search 

algorithms , and  

5) comparing the actual performance 

of competing algorithms for some tractable , 

constraint satisfaction  problems,  etc  

4. CONCLUSION  
As concluding remarks, we have observed that, for 

any problem that can be represented as a problem 

space, search techniques can be used to solve it. The 

price of this generality is exponential complexity, 

with the result that many problems of practical 

interest are solvable in principal with tree search. The 

limitations of computational capacity prevent them 

from being solved with expected complexities in 

practice. The increasing diversity in computing 

platforms motivates consideration of multi-processor 

environment. In such circumstances, we can also 

view the traditional tree search algorithms through a 

new perspective. 
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